A Deep Learning Approach Using Convolutional Neural Networks for Enhanced IoT Security and Governance
Publish place: The 25th National Conference on Computer Science and Engineering and Information Technology
Publish Year: 1403
نوع سند: مقاله کنفرانسی
زبان: Persian
View: 61
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CECCONF25_025
تاریخ نمایه سازی: 20 اسفند 1403
Abstract:
This article presents a novel approach to enhancing security and governance in smart cities by leveraging a hybrid **Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM)** model tailored for Internet of Things (IoT) systems. With the rapid expansion of IoT devices in urban environments, smart cities face unique challenges in managing real-time data and detecting anomalies to prevent security threats. Traditional methods struggle to capture both spatial and temporal patterns essential for effective threat detection and predictive maintenance in such dynamic settings. Our proposed CNN-LSTM method combines CNN's spatial feature extraction capabilities with LSTM's ability to process sequential data, achieving an impressive accuracy of ۹۳% in anomaly detection. This model not only enhances proactive threat response but also enables efficient resource allocation, making it a robust solution for sustainable and secure IoT governance in smart green cities.
Keywords:
Authors
Ali Zolfaghari Bengar
Islamic Azad University of Central Tehran Branch (IAUCTB)
Mohammad Hosein Poornoori
Islamic Azad University of Central Tehran Branch (IAUCTB)
Mohammad Sohrabi
Islamic Azad University of Central Tehran Branch (IAUCTB)