Hybrid Adaptive Neuro-Fuzzy Inference System-Particle Swarm Optimization Model for Corrosion Prediction of ۳C Steel Considering Different Marine Environment Factors
Publish Year: 1396
نوع سند: مقاله ژورنالی
زبان: English
View: 135
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MJEEMO-16-4_006
تاریخ نمایه سازی: 21 اسفند 1403
Abstract:
This research aims to describe a novel model, namely Hybrid Adaptive-Neuro Fuzzy Inference System-Particle Swarm Optimization (ANFIS-PSO), for predicting corrosion rate of ۳C steel considering different marine environment factors. In the present research, five parameters (temperature, dissolved oxygen, salinity, pH, and oxidation–reduction potential) were used as input variables, with corrosion rate being the only output variable. In the proposed hybrid ANFIS-PSO model, the PSO served as a tool to automatically search for and update optimal parameters for the ANFIS, so as to improve generalizability of the model. Eeffectiveness of the hybrid model was then compared those to two other models, namely Adaptive-Neuro Fuzzy Inference System–Genetic Algorithm (ANFIS-GA) and Support Vector Regression (SVR) models, by evaluating their results against the same experimental data. The results showed that the proposed hybrid model tends to produce a lower prediction error than those of ANFIS-GA and SVR with the same training and testing datasets. Indeed, the hybrid ANFIS-PSO model provides engineers with an applicable and reliable tool to conduct real-time corrosion prediction of ۳C steel considering different marine environment factors.
Keywords:
corrosion prediction , Adaptive Neuro-Fuzzy Inference System (ANFIS) , Particle Swarm Optimization (PSO) , Support Vector Regression (SVR) , steel , پیش بینی خوردگی , سیستم استنتاج نرو فازی تطبیقی , الگوریتم بهینه سازی ازدحام ذرات , ماشین بردار رگرسیون , کربن استیل
Authors
عباسعلی انصاری نژاد
Department of Instrumentation and Automation, Petroleum University of Technology, Ahwaz, Iran
مهدی شهباریان
Department of Instrumentation and Automation, Petroleum University of Technology, Ahwaz, Iran