Enhancing Going Concern Prediction Models: Integrating Text Mining with Data Mining Approaches
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 49
This Paper With 16 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJAAF-8-3_002
تاریخ نمایه سازی: 6 اردیبهشت 1404
Abstract:
The linguistic features embedded within business unit information play a crucial role in effectively conveying economic realities, a consideration increasingly recognized in accounting and behavioral finance research. This study endeavors to assess the predictive capacity of companies' going concern status by integrating structured and unstructured data, while also evaluating the impact of incorporating unstructured variables into traditional data mining models. Spanning from ۲۰۱۲ to ۲۰۲۱, the study encompasses a sample of ۵۴۰ company years listed on the Tehran Stock Exchange. Tone analysis of auditor reports was conducted using models by Mayew et al. (۲۰۱۵) and Visvanathan (۲۰۲۱), while MAXQDA ۲۰ text analysis software and the Loughran and McDonald (۲۰۱۵) dictionary facilitated data processing. Data analysis and hypothesis testing were performed using the logit regression model and the Vuong test. The findings support the first hypothesis, indicating that the text-based model yields a higher coefficient of determination compared to the data-based approach. Moreover, the second hypothesis reveals a significant discrepancy in the explanatory power between the data-based and integrated text-based models within companies
Keywords:
Authors
Hamid Abbaskhani
Department of Accounting, Bonab Branch, Islamic Azad University, Bonab, Iran
Asgar Pakmaram
Department of Accounting, Bonab Branch, Islamic Azad University, Bonab, Iran
Nader Rezaei
Department of Accounting, Bonab Branch, Islamic Azad University, Bonab, Iran
Jamal Bahri Sales
Department of Accounting, Urmia Branch, Islamic Azad University, Urmia, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :