Vieta-Lucas operational matrix technique for fractional variable-order integro-differential equations
Publish place: Journal of Mahani Mathematical Research، Vol: 14، Issue: 2
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 85
This Paper With 27 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_KJMMRC-14-2_009
تاریخ نمایه سازی: 13 خرداد 1404
Abstract:
The aim of this article is to find an effective method for solving variable-order fractional integro-differential equations. This method transforms the problem into a system of algebraic equations. For this purpose, we first express Vieta-Lucas orthogonal polynomials, then, we express the operational matrices of these polynomials. At this stage, all components of the equation will be expressed in terms of the new shifted Vieta-Lucas operational matrices. After that, by placing these operational matrices in the main equation and using the spectral collocation method, the variable-order fractional integro-differential equation will become an algebraic system. By solving this algebraic system, we will find an approximate solution to the original equation. In the following, an analysis of the error is also presented by preparing some theorems. In the end, in order to express the efficiency and capability of the method, some numerical examples are given. Additionally, for the numerical examples, the condition number, numerical convergence order, and the computed CPU time are evaluated. Based on the obtained results, it was concluded that the proposed method is relatively stable, highly accurate and efficient, and has an appropriate convergence rate.
Keywords:
Vieta-Lucas operational matrix , Fractional variable-order integro-differential equations , spectral collocation method , Error analysis
Authors
Mohsen Riahi Beni
Department of Mathematics, University of Saravan, Saravan, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :