Computer networks anomaly detection by using PCA & pattern recognition
Publish place: Mathematics and Computational Sciences، Vol: 6، Issue: 2
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 130
This Paper With 15 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMCS-6-2_006
تاریخ نمایه سازی: 20 تیر 1404
Abstract:
The detection of anomalies in computer networks is one of the most considerable challenges that experts in this field are facing nowadays. Thus far, different artificial intelligence methods and algorithms have been proposed, tested, and utilized for detecting these anomalies. However, attempts made to enhance the speed and accuracy of these anomalies’ detection process are continuously ongoing. In this research, pattern recognition based on artificial neural networks is applied to automatically detect anomalies in computer networks. Also, to increase the speed of the pattern recognition based on the process of the neural network, the principal component analysis algorithm will be used as a method for dimension reduction of training samples. The results of the performed simulations based on the proposed methods in this research show that dimension reduction of training samples by principal component analysis algorithm and then applying the pattern recognition based on neural networks method leads to high-speed (less than ۱۰ seconds) and high-accuracy (۹۹-۱۰۰%) detection of anomalies in computer networks.
Keywords:
Computer Networks Anomaly Detection , Pattern recognition , Artificial neural networks , Back Propagation Algorithm , Principal Component Analysis
Authors
Elham Bideh
Master Science of Computer Networks, Shomal University, Amol, Iran
Javad Vahidi
Department of Computer Science, Iran University of Science and Technology, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :