Predicting Survival of Leukemia Patients Using a Support Vector Machine Based on the Bowerbird Algorithm
Publish place: Transactions on Machine Intelligence، Vol: 4، Issue: 2
Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 88
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TMCH-4-2_002
تاریخ نمایه سازی: 23 تیر 1404
Abstract:
Unfortunately, research has shown that cancer incidence has been increasing in recent years. Leukemia is a type of blood cancer caused by an increase in the number of white blood cells. Generally, any type of blood cancer is extremely dangerous, and in most cases, there is no cure. Acute myeloid leukemia (AML) is a common and fatal type of this cancer. Predicting survival after diagnosis is one of the key indicators for evaluating treatment methods, which is the focus of the present study. In this research, we used a combination of Support Vector Machine (SVM) with the Bowerbird Algorithm to analyze survival status and predict mortality in patients. The data used pertains to patient information from Seyyed al-Shohada Hospital in Isfahan, with ۱۹۷ samples and ۹ features. MATLAB software was used to run the programs. Evaluation was based on diagnostic indices including sensitivity, specificity, and accuracy. The proposed SVM based on the Bowerbird Algorithm achieved a performance of ۶۹.۵۷% accuracy, ۷۵.۵۲% sensitivity, and ۶۴.۴۸% specificity, outperforming the combination of SVM with other optimization algorithms such as Cuckoo Search, Harmony Search, and Firefly Algorithm. Therefore, the proposed method is a promising tool for predicting survival in leukemia patients with improved diagnostic accuracy.
Keywords:
Authors
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :