Predicting the Severity of Non-Alcoholic Fatty Liver Disease Using ANFIS Optimized by Particle Swarm Optimization and Genetic Algorithm
Publish place: Transactions on Machine Intelligence، Vol: 2، Issue: 3
Publish Year: 1398
نوع سند: مقاله ژورنالی
زبان: English
View: 103
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TMCH-2-3_001
تاریخ نمایه سازی: 23 تیر 1404
Abstract:
The liver is a vital organ and the largest gland in the human body, responsible for numerous essential functions such as metabolism, digestion, protein synthesis, and the removal of harmful toxins. It plays a central role in maintaining overall health and ensuring the body's proper functioning. Malfunction or damage to the liver can lead to a variety of serious health issues, including liver failure, cirrhosis, and fatty liver disease, all of which can significantly impact a person's quality of life and life expectancy. Early detection and accurate diagnosis of liver diseases are crucial for timely treatment, prevention, and minimizing the risk of further complications. Traditional diagnostic methods for liver diseases often involve invasive procedures, which can be expensive, time-consuming, and uncomfortable for patients. This research explores an innovative, non-invasive approach to diagnose and assess the severity of fatty liver disease by analyzing blood test results. The study applies various advanced techniques, including the Adaptive Neuro-Fuzzy Inference System (ANFIS), ANFIS combined with Particle Swarm Optimization (PSO), and ANFIS with Genetic Algorithms (GA), to a dataset collected from the Tabriz University research center. These methods are compared in terms of their accuracy and efficiency in predicting the severity of fatty liver disease, providing valuable insights into the potential of machine learning algorithms for medical diagnostics. The findings aim to contribute to the development of more accessible, cost-effective, and non-invasive diagnostic tools for liver diseases.
Keywords:
liver disease , ANFIS Algorithm , Particle Swarm Optimization Algorithm , Genetic Algorithm , Classification
Authors
S.
Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
A.
Associate Professor, Department of Electrical Engineering, University of Tabriz, Tabriz, Iran
M. A.
Professor, Department of Electrical Engineering, University of Tabriz, Tabriz, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :