Can Artificial Intelligence Reliably and Accurately Measure Lower Limb Alignment: A Systematic Review and Meta-Analysis

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 122

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_TABO-13-7_001

تاریخ نمایه سازی: 29 تیر 1404

Abstract:

Objectives: Lower limb alignment (LLA) measurements are vital for pre-operative assessments and surgical planning in orthopedics. Artificial intelligence (AI) can enhance the precision and consistency of these measurements. This systematic review and meta -analysis evaluates the accuracy and reliability of AI-based approaches in detecting anatomical landmarks and measuring LLA angles, highlighting both their strengths and limitations.Methods: Adhering to PRISMA guidelines, we searched PubMed, Scopus, Embase, and Web of Science on July ۲۰۲۴ and included observational studies validating AI-driven LLA measurements. Pooled intraclass correlation coefficients (ICCs) were computed to assess inter-rater reliability between AI and manual measurements. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-۲) tool was used to assess study quality.Results: We reviewed ۲۸ studies with ۴۷,۲۰۰ patients and ۶۱,۲۵۳ images; AI demonstrated high reliability in measuring ۱۵ lower limb angles, with pooled ICCs ranging from ۰.۹۸۱۱ to ۱.۰۵۹۷. Angles like the hip-knee-ankle (HKA; ICC = ۰.۹۹۸۷, ۹۵% CI: ۰.۹۹۷۵–۰.۹۹۹۸) and the mechanical tibiofemoral angle (mTFA; ICC = ۱.۰۰۰۱, ۹۵% CI: ۱.۰۰۰۱–۱.۰۰۰۱) showed near-perfect agreement. In contrast, the joint line convergence angle (JLCA) and femoral anatomical-mechanical angle (FAMA) exhibited lower reliability and significant publication bias. Heterogeneity was substantial across most angles (I² = ۶۳%–۱۰۰%). These findings highlight the potential of AI for clinical applications while also identifying areas that require refinement and standardization.Conclusion: AI exhibits high reliability and accuracy in measuring key LLA angles, often outperforming manual techniques in both speed and consistency. It holds significant promise as a clinical tool, though challenges with less reliable angles warrant further refinement. Future studies should focus on standardizing landmark definitions and addressing implementation barriers to maximize AI’s potential in orthopedic practice. Level of evidence: IV

Authors

Yashar Khani

Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Amir Bisadi

Department of Orthopedic Surgery, Akhtar Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Ali Salmani

Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

Negarsadat Namazi

Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Iman Elahi Vahed

Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Joben Kianparsa

Student Research Committee, School of Medicine, Shahed University, Tehran, Iran

Mohammad Nouroozi

Clinical Research Development Unit (CRDU), Shohada-eTajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Fateme Mansouri Rad

Birjand University of Medical Sciences and Health Services, Birjand, Iran

Mohammad Poursalehian

Joint Reconstruction Research Center, Tehran University of Medical Sciences, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H. ...
  • Felson DT, Niu J, Gross KD, et al. Valgus malalignment ...
  • Sharma L, Chmiel JS, Almagor O, et al. The role ...
  • Choong PF, Dowsey MM, Stoney JD. Does accurate anatomical alignment ...
  • Tew M, Waugh W. Tibiofemoral alignment and the results of ...
  • Laskin RS. Alignment of total knee components. Orthopedics. ۱۹۸۴; ۷(۱):۶۲-۷۲. ...
  • Wright JG, Treble N, Feinstein AR. Measurement of lower limb ...
  • Gitto S, Serpi F, Albano D, et al. AI applications ...
  • Jung J, Dai J, Liu B, Wu Q. Artificial intelligence ...
  • Ren M, Yi PH. Artificial intelligence in orthopedic implant model ...
  • Simon S, Schwarz GM, Aichmair A, et al. Fully automated ...
  • Li Z, Liu F, Yang W, Peng S, Zhou J. ...
  • Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA ...
  • Marques Luís N, Varatojo R. Radiological assessment of lower limb ...
  • Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-۲: a ...
  • Mongan J, Moy L, Kahn Jr CE. Checklist for artificial ...
  • Yang J, Ren P, Xin P, et al. Automatic measurement ...
  • Archer H, Reine S, Xia S, et al. Deep learning ...
  • Bernard de Villeneuve F, Jacquet C, El Kadim B, et ...
  • Erne F, Grover P, Dreischarf M, et al. Automated Artificial ...
  • Gielis WP, Rayegan H, Arbabi V, et al. Predicting the ...
  • Jang SJ, Kunze KN, Casey JC, et al. Variability of ...
  • Jo C, Hwang D, Ko S, et al. Deep learning-based ...
  • Kim SE, Nam JW, Kim JI, Kim JK, Ro DH. ...
  • Kunze KN, Jang SJ, Li T, et al. Radiographic findings ...
  • Lee HS, Hwang S, Kim SH, et al. Automated analysis ...
  • Meng X, Wang Z, Ma X, et al. Fully automated ...
  • Mitterer JA, Huber S, Schwarz GM, et al. Fully automated ...
  • Miyama K, Akiyama T, Bise R, Nakamura S, Nakashima Y, ...
  • Moon HD, Choi HG, Lee KJ, Choi DJ, Yoo HJ, ...
  • Murad Y, Chhina H, Cooper A. Fully Automated Analysis of ...
  • Nam HS, Park SH, Ho JPY, Park SY, Cho JH, ...
  • Nguyen TP, Chae DS, Park SJ, Kang KY, Lee WS, ...
  • Pagano S, Müller K, Götz J, et al. The Role ...
  • Pei Y, Yang W, Wei S, et al. Automated measurement ...
  • Schock J, Truhn D, Abrar DB, et al. Automated Analysis ...
  • Schwarz GM, Simon S, Mitterer JA, et al. Artificial intelligence ...
  • Stotter C, Klestil T, Chen K, et al. Artificial intelligence-based ...
  • Tack A, Preim B, Zachow S. Fully automated Assessment of ...
  • Tanner IL, Ye K, Moore MS, et al. Developing a ...
  • Tsai A. A deep learning approach to automatically quantify lower ...
  • Wang J, Hall TAG, Musbahi O, Jones GG, van Arkel ...
  • Wilhelm NJ, von Schacky CE, Lindner FJ, et al. Multicentric ...
  • Kurmis AP, Ianunzio JR. Artificial intelligence in orthopedic surgery: evolution, ...
  • Droppelmann G, Rodríguez C, Jorquera C, Feijoo F. Artificial intelligence ...
  • Gupta P, Haeberle HS, Zimmer ZR, Levine WN, Williams RJ, ...
  • Morya VK, Lee HW, Shahid H, et al. Application of ...
  • Joseph GB, McCulloch CE, Sohn JH, Pedoia V, Majumdar S, ...
  • Chong YY, Chan PK, Chan VWK, et al. Application of ...
  • Xu D, Lou W, Li M, Xiao J, Wu H, ...
  • Zhang X, Yang Y, Shen YW, et al. Diagnostic accuracy ...
  • Collins G, Dhiman P, Andaur Navarro C, et al. Protocol ...
  • Sounderajah V, Ashrafian H, Aggarwal R, et al. Developing specific ...
  • Jayakumar S, Sounderajah V, Normahani P, et al. Quality assessment ...
  • Collins GS, Moons KG, Dhiman P, et al. TRIPOD+ AI ...
  • نمایش کامل مراجع