Dynamic Inventory Risk Profiling Using PCA and Clustering: A Data-Driven Approach to Supply Chain Optimization
Publish place: International Journal of Industrial Engineering & Production Research، Vol: 36، Issue: 3
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 90
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJIEPR-36-3_004
تاریخ نمایه سازی: 29 تیر 1404
Abstract:
Effective inventory management is critical for mitigating inefficiencies such as overproduction, excessive holding costs, and stockouts. This study leverages DBSCAN and GMM clustering methods, combined with Principal Component Analysis (PCA) for dimensionality reduction, to categorize inventory data into distinct risk-based clusters. The analysis highlights that DBSCAN outperformed GMM, achieving a silhouette score of ۰.۶۲ compared to ۰.۴۹, while identifying three meaningful inventory clusters. Each cluster reflects unique combinations of risk factors, providing actionable insights for optimizing inventory levels. The study demonstrates how these clusters enable targeted strategies to address inefficiencies and improve overall inventory management. Limitations include the reliance on historical data, which may not fully capture dynamic market conditions, and the assumption of fixed clustering parameters. The findings underscore the importance of choosing clustering algorithms suited to the data's characteristics and highlight the potential of PCA in enhancing computational efficiency. Future research should explore dynamic clustering techniques and integrate real-time data streams to refine inventory management strategies further.
Keywords:
Inventory optimization , Inventory risk factors , Supply chain efficiency , Data-driven inventory management , Clustering analysis , Principal Component Analysis (PCA)
Authors
Ida Lumintu
Department of Industrial Engineering, University of Trunojoyo Madura
Achmad Maududie
Department of Information System, University of Jember, Indonesia
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :