Prediction of Hotspots in Proteins Using Machine Learning Techniques
Publish Year: 1405
نوع سند: مقاله ژورنالی
زبان: English
View: 79
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-39-7_006
تاریخ نمایه سازی: 26 شهریور 1404
Abstract:
In order to create medications that effectively modulate Protein-Protein Interaction (PPI) and aid in the treatment of illnesses, protein hotspots are essential. One computational technique that aids in the prediction of protein hotspots is machine learning. The use of machine learning methods to predict protein hotspots is investigated in this work. Feature selection methods were used to analyze a protein dataset. k-Nearest Neighbor (kNN), Support Vector Machine (SVM), Random Forest, XGBoost, and Logistic Regression were among the machine learning algorithms used. With models such as Logistic Regression and SVM, Physicochemical features (PHY) and Solvent Accessible surface Area (ASA) demonstrated strong predictive performance among the features examined, attaining accuracy scores of up to ۰.۷۳۰, AUC values up to ۰.۸۸۵, and F۱-scores up to ۰.۶۴۲. These metrics indicate the effectiveness with which they can predict hotspots which supports computational biology applications.
Keywords:
Protein Hotspots Protein , Protein Interaction Machine Learning Feature Selection
Authors
G. S. L. B. V. Prasanthi
Electronics and Communication Engineering Department, Koneru Lakshmiah Education Foundation, Hyderabad, India
R. Boda
Electronics and Communication Engineering Department, Koneru Lakshmiah Education Foundation, Hyderabad, India
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :