A New Mixed-Integer Linear Programming Model for Ultimate Pit Limit Determination and Production Planning of Open Pit Mines Considering Effective Operational Constraints

Publish Year: 1405
نوع سند: مقاله ژورنالی
زبان: English
View: 114

This Paper With 19 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJE-39-7_002

تاریخ نمایه سازی: 26 شهریور 1404

Abstract:

Strategic mine planning is essential for attracting investment and ensuring efficient resource utilization. Long-term production scheduling determines the sequence of ore and waste block extraction to maximize economic returns while satisfying operational constraints. In addition to estimating the Net Present Value (NPV), it provides a foundation for medium- and short-term planning.This study presents a Mixed-Integer Linear Programming (MILP) model for determining the ultimate pit limit and performing long-term production scheduling under two scenarios: with and without the use of a stockpile. The model aims to maximize project NPV while incorporating seven key constraints—four geometric (block precedence, pit floor width, block extraction continuity, and non-repetition of block selection) and three demand-based (extraction capacity, ore block requirement, and minimum feed grade per period). The model was implemented in GAMS and tested on a hypothetical ۵×۷ block dataset to evaluate its feasibility and performance. Sensitivity analysis showed that increasing the pit floor width from one to four blocks resulted in a ۴۴.۸% reduction in the objective function value. A demand sensitivity analysis (۱–۳ blocks per period) under the non-stockpile scenario revealed that a ۳-block demand was infeasible, while the best result was achieved at ۱ block. To address infeasibility, stockpile inventory and shortage variables were introduced. The updated model identified ۲ blocks per period as the optimal plant capacity, balancing stockpile holding costs and shortage penalties. If demand exceeds production, a penalty is applied to the objective function; if production exceeds demand, the surplus is added to the stockpile for future use. This mechanism enhances scheduling flexibility and supports more robust decision-making under real-world constraints.

Keywords:

Authors

M. M. Hajiabedi

Department of Mining Engineering, Amirkabir University of Technology, Tehran, Iran

S. Afraei

Department of Mining Engineering, Amirkabir University of Technology, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Krakoff C. Sector Licensing Studies: Mining Sector. Washington, D.C: Investment ...
  • Osanloo M. Surface Mining Methods. ۶ th ed. Tehran: Amirkabir ...
  • Vallee M. Mineral resource+ engineering, economic and legal feasibility = ...
  • Lane KF. The economic definition of ore: cut-off grades in ...
  • Azimi Y, Osanloo M, Esfahanipour A, editors. Optimisation of mining ...
  • Whittle J. The facts and fallacies of open pit optimization. ...
  • W. HUSTRULID MKARM. OPEN PIT MINE PLANNING & DESIGN. ۳ ...
  • Commodity price uncertainty propagation in open-pit mine production planning by Latin hypercube sampling method [مقاله ژورنالی]
  • Van Rensburg WC, Bambrick S. The economics of the world's ...
  • Darwen PJ. Genetic Algorithms and Risk Assessment to Maximise NPV ...
  • Ramazan S, Dimitrakopoulos R. Traditional and new MIP models for ...
  • Golamnejad J, Osanloo, M., Karimi B. A chance-constrained programming approach ...
  • Dimitrakopoulos R, Ramazan S. Stochastic integer programming for optimising long ...
  • Gholamnezhad J, Osanloo M, Khoram E. A chance constrained integer ...
  • Xu T, Yang P, Liu Z, editors. Mine ore blending ...
  • Boland N, Dumitrescu I, Froyland G. A multistage stochastic programming ...
  • Groeneveld B, Topal E. Flexible open-pit mine design under uncertainty. ...
  • Askari-Nasab H, Pourrahimian Y, Ben-Awuah E, Kalantari S. Mixed integer ...
  • Gholamnejad J, Moosavi E. A new mathematical programming model for ...
  • Lamghari A, Dimitrakopoulos R. A diversified Tabu search approach for ...
  • Ramazan S, Dimitrakopoulos R. Production scheduling with uncertain supply: a ...
  • Benndorf J, Dimitrakopoulos R. Stochastic long-term production scheduling of iron ...
  • Montiel L, Dimitrakopoulos R. Optimizing mining complexes with multiple processing ...
  • Goodfellow RC, Dimitrakopoulos R. Global optimization of open pit mining ...
  • Gilani S-O, Sattarvand J. Integrating geological uncertainty in long-term open ...
  • Lamghari A, Dimitrakopoulos R. Network-flow based algorithms for scheduling production ...
  • Moreno E, Rezakhah M, Newman A, Ferreira F. Linear models ...
  • Mohammadi S, Kakaie R, Ataei M, Pourzamani E. Determination of ...
  • Parra A, Morales N, Vallejos J, Nguyen PMV. Open pit ...
  • Paithankar A, Chatterjee S. Open pit mine production schedule optimization ...
  • Alipour A, Khodaiari AA, Jafari A, Tavakkoli-Moghaddam R. Production scheduling ...
  • Maleki M, Jélvez E, Emery X, Morales N. Stochastic open-pit ...
  • Gilani S-O, Sattarvand J, Hajihassani M, Abdullah SS. A stochastic ...
  • Tolouei K, Moosavi E, Bangian Tabrizi AH, Afzal P, Aghajani ...
  • Alipour A, Khodaiari AA, Jafari A, Tavakkoli-Moghaddam R. An integrated ...
  • Khan A, Asad MWA, Topal E. A heuristic method for ...
  • Blom M, Pearce AR, Cote P. Long-term mine planning with ...
  • Muke P, Tholana T, Musingwini C, Ali M. A genetic ...
  • نمایش کامل مراجع