MCVAE: A New Multi-Conditional Approach for Scalable Emergency Ad Hoc Network Design and Node Localization Using Generative Variational Autoencoder
Publish Year: 1405
نوع سند: مقاله ژورنالی
زبان: English
View: 85
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-39-6_008
تاریخ نمایه سازی: 26 شهریور 1404
Abstract:
In disaster scenarios where traditional communication infrastructure is unavailable or damaged, the rapid deployment of efficient ad hoc wireless networks is critical. These networks must be adaptable, self-organizing, and capable of maintaining reliable communication links under uncertain and dynamic environmental conditions. However, obtaining optimal ad hoc network design and accurate node localization remains a challenging task, especially in disaster scenarios where time is critical. This work addresses these issues by introducing a novel Multi-Conditioning Variational Autoencoder (MCVAE) model for generating optimized ad hoc node localization conditioned on multiple factors, such as network area size, node count, and success criteria. The proposed generative model not only addresses the localization problem but also enables on-demand generation of emergency ad hoc networks, making it a practical solution for real-time deployments in disaster-stricken areas. Furthermore, a synthetic dataset incorporating realistic features that effectively describe the ad hoc node distribution environment was created. The MCVAE model was trained on this dataset to learn complex dependencies between input conditions and network design. Experimental results demonstrate that the model effectively generalizes beyond the training area sizes, accurately generating node layouts for previously unseen dimensions with efficient distribution and low localization error (RMSE ۰.۱۲۵ for a network size of ۴۵۰ m۲ with ۲۸۵ nodes) and an R۲ score of ۰.۹۹۹۹. Additionally, the proposed methodology achieves excellent scalability and adaptability for generative ad hoc networks, allowing users to specify different area dimensions and automatically receive efficient node distributions with minimal localization error. The findings highlight the model's potential for real-time, data-driven deployment of resilient ad hoc networks in disaster-stricken or infrastructure-limited regions. This is the first work to contribute a practical and scalable use of a generative AI model that can significantly enhance wireless communication readiness in emergency situations.
Keywords:
generative AI , Ad hoc Network Design , Node Localization , Multi-Conditional Variational Autoencoder , Emergency Communication Network , Disaster Response Communication
Authors
M. A. A. Jabbar
Department of Computer Science, University of Technology, Baghdad, Iraq
A. R. Abbas
Department of Computer Science, University of Technology, Baghdad, Iraq
R. F. Ghani
Department of Computer Science, University of Technology, Baghdad, Iraq
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :