Optimized Deep Learning Model for Pomegranate Disease Detection: A Convolutional Neural Network Long Short-Term Memory Approach

Publish Year: 1405
نوع سند: مقاله ژورنالی
زبان: English
View: 91

This Paper With 15 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJE-39-5_010

تاریخ نمایه سازی: 26 شهریور 1404

Abstract:

Pomegranate is a high-value fruit globally recognized for its nutritional benefits and applications in traditional medicine and cosmetics. India is a key player in the global pomegranate market, but the industry faces challenges such as diseases that affect crop productivity and economic losses for farmers. This study proposes a novel approach to pomegranate disease detection using a hybrid Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) model. The proposed model leverages CNNs for effective feature extraction and LSTMs for sequential data handling, achieving superior performance compared to traditional methods and other deep learning techniques. Experimental results demonstrate high accuracy, recall, precision, and F۱ score. The Proposed model achieved an accuracy of ۹۸.۵۳% and loss of ۰.۰۶۷۷. The study also explores the limitations of transfer learning approaches such as VGG۱۶ and ResNet۵۰, and larger models like AlexNet, which did not perform well in this context. The findings suggest that the hybrid CNN-LSTM model offers a scalable and adaptable solution for agricultural disease detection, with potential applications for various crops.

Authors

P. Sahebgouda

Department of Computer Science and Engineering, BLDEA’s V. P. Dr. P. G. Halakatti College of Engineering and Technology, (Affiliated to Visvesvaraya Technological University, Belagavi-۵۹۰۰۱۸), Vijayapur, Karnataka, India

S. Maradithaya

Department of Computer Science and Engineering, M.S. Ramaiah Institute of Technology, (Affiliated to Visvesvaraya Technological University, Belagavi-۵۹۰۰۱۸), Bengaluru, Karnataka, India

A. Jadhav

Department of Electrical and Electronics Engineering, BLDEA’s V.P.Dr.P.G.Halakatti College of Engineering and Technology, (Affiliated to Visvesvaraya Technological University, Belagavi-۵۹۰۰۱۸) Vijayapur, India

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Khan N, Fahad S, Naushad M, Faisal S. Pomegrantes economics ...
  • Heber D. Pomegranate ellagitannins. Herbal Medicine: Biomolecular and Clinical Aspects ...
  • Kantale P, Thakare S. Pomegranate disease classification using Ada-Boost ensemble ...
  • Sharath D, Kumar SA, Rohan M, Suresh K, Prathap C, ...
  • Pawar S, Shedge S, Panigrahi N, Jyoti A, Thorave P, ...
  • نمایش کامل مراجع