Artificial Intelligence for Alzheimer’s Detection through Advanced Diagnostic Profiling and Multimodal Fusion
Publish Year: 1405
نوع سند: مقاله ژورنالی
زبان: English
View: 87
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-39-4_014
تاریخ نمایه سازی: 26 شهریور 1404
Abstract:
Alzheimer’s disease is a complex neurodegenerative condition that presents significant challenges in early diagnosis and progression prediction for faster results. In this work, BioML-AD is introduced as the first multimodal machine learning framework for integrating and analyzing a range of biomarker profiles, including genetic, neuroimaging, and cognitive data, to improve early detection and prediction of disease progression. The method is composed of three main layers CNN feature extraction for neuroimaging data, temporal cognitive assessment with RNN, and genetic biomarkers with random forests. The outputs are then fused through a multimodal attention network to enhance the accuracy of clinical predictions. The features are then combined through a Multimodal Attention Network (MMAN) to focus on the few biomarkers that contribute most to the prediction of early-stage AD and then additionally build a hybrid Long Short-Term Memory (LSTM) and transformer-based model to predict progression from MCI to AD. The performance of BioML-AD is evaluated across five key measures early detection accuracy, identifying early-stage AD, biomarker contribution score, estimating biomarker importance, progression prediction reliability, providing stable predictions over time, model interpretability, using shape values for feature explanation, and generalization capability, assessing performance across diverse patient data. It has been tested on an MRI dataset for early diagnosis and clinical decision support, and BioML-AD proves to be an efficient and effective tool, offering highly sensitive and reliable results for clinical applications.
Keywords:
Authors
R. Hema
Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Andhra Pradesh, India
C. Smitha Chowdary
Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Andhra Pradesh, India
B. Balaji
Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Andhra Pradesh, India
B. Nageshwar Rao
Department of Cyber Security & IoT, School of Engineering, Malla Reddy University, Maisammaguda, Dulapally, Hyderabad, Telangana, India
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :