Investigating the performance of tubular direct ammonia IT-SOFC with temkin- pyzhev kinetic model using machine learning and CFD
Publish place: Journal of Computational and Applied Research in Mechanical Engineering، Vol: 14، Issue: 2
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 87
This Paper With 20 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JCARME-14-2_006
تاریخ نمایه سازی: 26 شهریور 1404
Abstract:
Researchers encounter difficulties in producing clean energy and addressing environmental issues. Solid oxide fuel cells (SOFCs) present a promising prospect to the growing demand for clean and efficient electricity due to their capacity to convert chemically stored energy into electrical energy directly. In enhancing this technology, ammonia is employed as a cost-effective and carbon-free fuel with convenient transport capabilities. Efficiently predicting the performance of a system in relation to its operating environment has the potential to expedite the identification of the optimal operating conditions across a broad spectrum of parameters. For this purpose, the performance of intermediate temperature solid oxide fuel cell (IT-SOFC) with inlet ammonia fuel is predicted utilizing machine learning, which is efficient in time and cost. Initially, the system is simulated with computational fluid dynamics finite element code to generate data for training machine learning algorithms (DNN, RFM and LASSO regression), followed by an evaluation of the predictive accuracy of these algorithms. The analysis demonstrates that the three examined algorithms exhibit sufficient accuracy in predicting the performance of the introduced solid oxide fuel cell (SOFC) system, all surpassing a ۹۵ percent threshold. The RFM and DNN exhibit the most accurate predictions for the maximum temperature and power density of fuel cells, respectively.
Keywords:
Authors
Mahdi Keyhanpour
Department of Mechanical Engineering, Khaje Nasir Toosi University of Technology, Tehran, Tehran, ۱۹۹۹۱۴۳۳۴۴, Iran
Majid Ghassemi
Department of Mechanical Engineering, Khaje Nasir Toosi University of Technology, Tehran, Tehran, ۱۹۹۹۱۴۳۳۴۴, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :