System of Volterra Fredholm Integro-Fractional Differential Equations: Application of Fibonacci Polynomials
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 85
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_GADM-9-1_009
تاریخ نمایه سازی: 29 شهریور 1404
Abstract:
In this paper, we introduce the Fibonacci polynomials (FPs) and approximate functions using them. Furthermore, several lemmas and corollaries present the properties of FPs. Also, we derive the Fibonacci polynomials operational matrix for the fractional derivative in the Caputo sense, which has not been undertaken before. As applications of the Fibonacci polynomials operational matrix, we solve the system of Volterra Fredholm integro-fractional differential equations. In this scheme, we approximate one and two variable functions based on Fibonacci basis. Then by applying Fibonacci polynomials operational matrix, the system of Volterra Fredholm integro-fractional differential equations is reduced to a system of algebraic equations that is easily solvable with the help of a software (version ۱۳ of the Mathematica software). The obtained results are in good agreement with the exact solutions and with those in literature. As anticipated, the solutions converge to classical solutions as the fractional derivative order approaches integer values.
Keywords:
System of Fredholm Volterra integro-fractional differential equations , Fibonacci polynomials , operational matrix , Caputo derivative
Authors
Zahra Gilani
Department of Mathematics, Faculty of Basic Science, Babol Noshirvani University of Technology, Babol, Iran
Mohsen Alipour
Department of Mathematics, Faculty of Basic Science, Babol Noshirvani University of Technology, Babol, Iran
Sanaz Rivaz
Department of Mathematics, Faculty of Basic Science, Babol Noshirvani University of Technology, Babol, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :