Providing a Solution for Processing Heterogeneous Tasks in Cloud Computing Using Distributed Resource Allocation
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 73
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JRMDE-4-3_013
تاریخ نمایه سازی: 7 مهر 1404
Abstract:
In this study, a novel approach is presented for processing heterogeneous tasks in Cloud Computing environments by leveraging optimal distributed resource allocation. The primary objective is to enhance processing efficiency and achieve effective resource utilization in conditions where tasks have diverse characteristics, varying data volumes, and different computational requirements. The proposed method models tasks and resources as a directed acyclic graph and employs a multi-objective optimization algorithm to perform resource allocation in a way that not only reduces the overall processing time but also ensures load balancing among resources. This approach, by incorporating priority queues and execution time analysis for each subtask, enables the selection of the most appropriate resource for each task. The simulation results indicate that the proposed method achieves significant improvements over conventional algorithms in reducing the overall job completion time, increasing resource utilization rates, and enhancing the quality of service in heterogeneous task processing. In this study, a novel approach is presented for processing heterogeneous tasks in Cloud Computing environments by leveraging optimal distributed resource allocation. The primary objective is to enhance processing efficiency and achieve effective resource utilization in conditions where tasks have diverse characteristics, varying data volumes, and different computational requirements. The proposed method models tasks and resources as a directed acyclic graph and employs a multi-objective optimization algorithm to perform resource allocation in a way that not only reduces the overall processing time but also ensures load balancing among resources. This approach, by incorporating priority queues and execution time analysis for each subtask, enables the selection of the most appropriate resource for each task. The simulation results indicate that the proposed method achieves significant improvements over conventional algorithms in reducing the overall job completion time, increasing resource utilization rates, and enhancing the quality of service in heterogeneous task processing.
Keywords:
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :