A Deep Learning Pipeline for Accurate Road Detection in Satellite Imagery

Publish Year: 1405
نوع سند: مقاله ژورنالی
زبان: English
View: 58

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJE-39-9_004

تاریخ نمایه سازی: 10 آبان 1404

Abstract:

This paper presents a deep-learning pipeline for accurate road extraction from satellite imagery, integrating image classification, data augmentation, and semantic segmentation. A preliminary road-presence classification stage (VGG۱۶/VGG۱۹ with transfer learning) filters irrelevant tiles, reducing computation and mitigating false positives. Data augmentation strategies (rotations, flips, zooms, brightness/contrast adjustments) further enhance robustness against occlusion, scale, and illumination variability. For segmentation, the DeepLabV۳+ model with a ResNet-۵۰ backbone is employed, achieving high Intersection over Union (IoU) and low Dice Loss on the DeepGlobe dataset. VGG۱۶ outperformed VGG۱۹ in classification, with accuracies of ۹۹.۲۹% (train) and ۹۹.۰۹% (val), while DeepLabV۳+ attained IoU ≈ ۹۵.۸% and Dice ≈ ۹۷.۹% on road-positive subsets. Comparative analysis with recent state-of-the-art methods (e.g., U-Net, RSRCNN, RoadCT, CC-DeeplabV۳+) highlights that our pipeline achieves competitive accuracy with moderate complexity (~۴۱M parameters), making it efficient and scalable for large-scale applications. While the DeepGlobe dataset already covers diverse geographic regions, we acknowledge that further cross-dataset evaluations (e.g., SAR or lower-resolution sensors) remain necessary for assessing generalization. The proposed framework provides a practical and efficient baseline for road extraction, with potential applications in urban planning, transportation management, and disaster response.

Authors

I. Mayouche

Intelligent Automation and BioMedGenomics Laboratory, FST of Tangier, Abdelmalek Essaâdi University, Tetouan, Morocco

I. Boukrouh

Intelligent Automation and BioMedGenomics Laboratory, FST of Tangier, Abdelmalek Essaâdi University, Tetouan, Morocco

A. Azmani

Intelligent Automation and BioMedGenomics Laboratory, FST of Tangier, Abdelmalek Essaâdi University, Tetouan, Morocco

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :