Enhancing Smart Contract Access Control via Digital Identity Management and Machine Learning

Publish Year: 1405
نوع سند: مقاله ژورنالی
زبان: English
View: 44

This Paper With 14 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJE-39-8_019

تاریخ نمایه سازی: 10 آبان 1404

Abstract:

In the field of blockchain technology, ensuring secure and efficient access control for smart contracts remains a critical challenge. Traditional methods are often complex and resource-intensive, potentially hindering widespread adoption. This study proposes a novel machine learning-based approach to enhance access control mechanisms. Specifically, we classify users as either benign or potentially malicious based on transaction behavior and interaction patterns. A Support Vector Machine (SVM) classifier, combined with a Genetic Algorithm (GA) for dimensionality reduction, is applied to a dataset containing ۵۰,۰۰۰ transaction records from ۱,۰۰۰ blockchain addresses. The model achieved an accuracy of ۹۴% on the test set and effectively distinguished users based on server interaction frequency and connection duration. Through visual analysis and comprehensive evaluation, we demonstrate that the proposed method improves both anomaly detection and operational efficiency. This approach has the potential to bolster trust and facilitate broader adoption of blockchain-based applications.

Keywords:

Blockchain Ethereum Blockchain Digital Identity Management Machine Learning

Authors

R. Amiri

Department of Computer Science, University of Tabriz, Tabriz, Iran

J. Karimpour

Department of Computer Science, University of Tabriz, Tabriz, Iran

H. Izadkhah

Department of Computer Science, University of Tabriz, Tabriz, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Nakonechnyi V, Toliupa S, Saiko V, Lutsenko V, Ghno GSN, ...
  • Chou C-C, Hwang N-CR, Schneider GP, Wang T, Li C-W, ...
  • Béres F, Seres IA, Benczúr AA, Quintyne-Collins M, editors. Blockchain ...
  • Lin S-Y, Zhang L, Li J, Ji L-l, Sun Y. ...
  • نمایش کامل مراجع