Cyber Risk Prediction for UAVs in Space-Related Missions Using Deep Reinforcement Learning

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: Persian
View: 60

This Paper With 15 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JSST-18-0_001

تاریخ نمایه سازی: 11 آبان 1404

Abstract:

Space exploration and satellite deployment drive modern technological advancements. They are crucial for global communication, navigation, and scientific discovery. Satellites form the backbone of interstellar communication, ensuring reliable data transfer in both civilian and defense sectors. However, as space missions grow more complex, maintaining their integrity and security becomes a major challenge.Unmanned Aerial Vehicles (UAVs) play a key role in space missions. They assist in satellite deployment, orbital inspections, and inter-satellite communication. Yet, these cyber-physical systems face evolving cybersecurity threats that could jeopardize mission-critical tasks. Traditional intrusion detection systems struggle to counter the complex and dynamic cyber threats targeting UAVs in harsh space environments.This paper introduces a novel Deep Reinforcement Learning model to predict and mitigate cyber risks in space-related UAV missions. Using a publicly available dataset that combines cyber and physical UAV data, the model predicts multi-step threats such as Denial of Service, Replay, Evil Twin, and False Data Injection. This enables proactive threat mitigation. Compared to traditional machine learning models—Support Vector Machines, Random Forests, and Recurrent Neural Networks—the proposed model achieves superior performance, with ۹۹.۳۴% accuracy and an AUC score of ۰.۹۹.

Authors

عرفان خسرویان

Department of Mechanical Engineering, Payame Noor University, Tehran, Iran

مطهره دهقان

Faculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • M. Navabi and F. Malekpour, "Satellite status control using tabulation ...
  • R. Ghasrizadeh and A. A. Nikkhah, "Improved spoofing loosely coupled ...
  • M. Ebrahimi Kachoie, M. Arbabmir, and M. Norouz, "A survey ...
  • E. Khosravian and M. Dehghan, "Advancing situation awareness systems: Evaluating ...
  • C. Rani, H. Modares, R. Sriram, D.Mikulski, and F. l. ...
  • M. Dehghan and B. Sadeghiyan, "Privacy-preserving collision detection of moving ...
  • Z. Yu, Z. Wang, J. Yu, D. Liu, H. Herbert ...
  • S. C. Hassler, U. A. Mughal and M. Ismail, "Cyber-physical ...
  • M. Dehghan and E. Khosravian, “A review of cognitive UAVs: ...
  • B. S. Sarıkaya and Ş. Bahtiyar, "A survey on security ...
  • S. Niyonsaba, K. Konate, and M. M. Soidridine, “Deep learning ...
  • D. Javeed, T. Gao, P. Kumar, S. Shoukat, I. Ahmad ...
  • A. Alzahrani, "Novel approach for intrusion detection attacks on small ...
  • M. Dehghan and E. Khosravian, "Private federated learning for APT ...
  • M. Rizwanullah et al., “Modelling of metaheuristics with machine learning-enabled ...
  • K. Arulkumaran, M. P. Deisenroth, M. Brundage and A. A. ...
  • M. Dehghan, B. Sadeghiyan, E. Khosravian, A. S. Moghaddam, and ...
  • V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and ...
  • Z. Ding, Y. Huang, H. Yuan, and H. Dong, "Introduction ...
  • J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, ...
  • D. V. Carvalho, E. M. Pereira and J. S. Cardoso, ...
  • M. Saarela and S. Jauhiainen, “Comparison of feature importance measures ...
  • نمایش کامل مراجع