Determining Individual Normal Behavior of Drivers Using an Interactive Model

Publish Year: 1386
نوع سند: مقاله ژورنالی
زبان: English
View: 71

This Paper With 18 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_MJEEMO-7-0_005

تاریخ نمایه سازی: 12 آبان 1404

Abstract:

In this paper, an interactive model for individual normal behaviour of drivers is presented in which the mutual effect of vehicles has been incorporated. Temporal features obtained from vehicles tracking and their motion history is utilized for generating a model of normal behaviour. Because of non-stationarity of behaviour, Hidden Markov Model has been used for interactive model. This model has three main parts. The first part is the history of antecedent trajectory which for this purpose has proposed a Centers Transition Matrix (CTM) that is some type of spatio-temporal information-data bank from motions seen in the old frames. The second part is based on the linguistic features or motion recognition of vehicles, these motions contain forward, turn right and left, lane changing to right and left motion. The third part is constituted from low level features which contain Velocity and distance to neighbor object. Also CTM is efficient in search at similar blob in image sequences and it can determine the radius and region of search. This top-down feedback caused an increment of performance of RLS tracker and object searching. In the presented system, we obtained a ۸۱.۲% membership rate to normal model. Also types of motion are recognized using HMM with a recognition rate of up to ۸۲.۷%. Prediction error is reduced on many vehicles trajectory by at least ۸۰% using a feedback system.

Authors

احسان اله کبیر

Tarbiat Modarres Univ

مجتبی لطفی زاد

Tarbiat modares Univ

هادی صدوقی یزدی

Tarbiat Moallem University of Sabzevar

محمود فتحی

, Iran University of Science and Technology

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :