Artificial Intelligence for Early Detection and Diagnosis of Breast Cancer: A Systematic Review of Machine Learning and Deep Learning Approaches

Publish Year: 1405
نوع سند: مقاله ژورنالی
زبان: English
View: 46

This Paper With 13 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_EJCMPR-5-1_008

تاریخ نمایه سازی: 18 آبان 1404

Abstract:

Breast cancer remains one of the leading causes of cancer-related mortality among women globally, highlighting the critical need for early detection and accurate diagnosis. Recent advances in artificial intelligence (AI), encompassing both machine learning (ML) and deep learning (DL) approaches, have demonstrated significant potential in enhancing diagnostic accuracy, reducing human error, and supporting clinical decision-making. This systematic review critically analyzes existing studies that employ AI for breast cancer detection, focusing on methodological approaches, dataset characteristics, model performance, and interpretability. ML-based techniques, including support vector machines, random forests, and gradient boosting, show promising results in structured datasets, particularly where dataset sizes are limited, and interpretability is essential. In contrast, DL approaches, primarily convolutional neural networks and their variants, outperform ML in raw image analysis, multi-modal imaging, and complex feature extraction, achieving higher accuracy and sensitivity. Hybrid models integrating ML and DL, often augmented with radiomics features, offer a balanced framework, combining high predictive performance with improved interpretability. Additionally, explainable AI (XAI) techniques are increasingly applied to DL models, mitigating the “black-box” problem and fostering clinical trust. Despite these advancements, challenges remain, including the need for large, high-quality, multi-institutional datasets, computational resource demands, and generalizability across diverse populations. Low-resource and portable AI solutions offer potential for broader accessibility, though with modest reductions in predictive performance. Overall, AI demonstrates transformative potential in early breast cancer detection, particularly when combined with hybrid and explainable frameworks. Future research should prioritize multi-modal integration, rigorous cross-center validation, and deployment strategies that balance accuracy, interpretability, and accessibility, ultimately facilitating clinical adoption and improving patient outcomes.

Authors

Mehrdad SalekShahabi

M.D. Department of Medicine, Faculty of Medicine, Islamic Azad University, Tabriz Branch, Tabriz, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • References[۱] Albashish, D. (۲۰۲۱). Deep CNN model based on VGG۱۶ ...
  • Alom, M. D. R. (۲۰۲۵). An explainable AI-driven deep neural ...
  • Alotaibi, M. (۲۰۲۳). Breast cancer classification based on convolutional neural ...
  • AlSamhori, J. F. (۲۰۲۴). Artificial intelligence for breast cancer: Implications ...
  • Ansari, Z. A. (۲۰۲۵). The role of explainable AI in ...
  • Arravalli, T. (۲۰۲۵). Detection of breast cancer using machine learning ...
  • Bai, S. (۲۰۲۴). Breast cancer diagnosis: A comprehensive exploration of ...
  • Barrios, C. H. (۲۰۲۲). Global challenges in breast cancer detection ...
  • Boddu, A. S. (۲۰۲۵). A systematic review of machine learning ...
  • Díaz, O. (۲۰۲۴). Artificial intelligence for breast cancer detection. Science ...
  • Ghasemi, A. (۲۰۲۴). Explainable artificial intelligence in breast cancer detection ...
  • Houssami, N. (۲۰۱۹). Artificial intelligence for the early detection of ...
  • Humayun, S. (۲۰۲۵). Artificial intelligence for early diagnosis of breast ...
  • Jaglan, P. (۲۰۱۹). Breast cancer detection techniques: Issues and challenges. ...
  • Karthiga, R. (۲۰۲۴). Review of AI & XAI-based breast cancer ...
  • Kaushik, R. (۲۰۲۴). Integrating explainable AI with infrared imaging and ...
  • Liu, J. (۲۰۲۰). Urban big data fusion based on deep ...
  • Meng, T. (۲۰۲۰). A survey on machine learning for data ...
  • Miao, P. (۲۰۲۵). Explainable AI-enabled hybrid deep learning architecture for ...
  • Moursi, A. (۲۰۲۵). AI-based breast cancer detection system: Deep learning ...
  • Nakach, F.-Z. (۲۰۲۴). A comprehensive investigation of multimodal deep learning ...
  • Nasser, M. (۲۰۲۳). Deep learning-based methods for breast cancer diagnosis. ...
  • Nounou, M. I. (۲۰۱۵). Breast cancer: Conventional diagnosis and treatment ...
  • Othman, G. B. (۲۰۲۴). Selecting optimal long short-term memory (LSTM) ...
  • Ozsahin, D. U. (۲۰۲۲). The systematic review of artificial intelligence ...
  • Patel, A. D. (۲۰۲۴). Security trends in internet-of-things for ambient ...
  • Sechopoulos, I. (۲۰۲۱). Artificial intelligence for breast cancer detection in ...
  • Stahlschmidt, S. R. (۲۰۲۲). Multimodal deep learning for biomedical data ...
  • Wu, G.-G. (۲۰۱۹). Artificial intelligence in breast ultrasound. World Journal ...
  • Yoon, J. H. (۲۰۲۳). Standalone AI for breast cancer detection ...
  • نمایش کامل مراجع