The Investigation and Comparison of “Orthographic Depth” in Persian and English Writing Systems through the Homography Feature
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 73
This Paper With 16 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJALS-16-2_007
تاریخ نمایه سازی: 27 آبان 1404
Abstract:
The concept of “orthographic depth” refers to the degree of the deviation of the writing system from the one-to-one correspondence between graphemes and phonemes. This study aims to explore and compare of the “orthographic depth” between Persian and English writing systems using UTPECC corpus and homographic scale. To this end, the scope of the application of the homography feature in ۱۰۰۰۰ words of Persian writing system was determined by using the word processing software ۲۰۱۰ through the synchronic study in the field of graphology. Then, the occurrence frequency of this feature was briefly compared with a similar number of words in English writing system. The research results show only ۴ graphemes possess homography feature in Persian writing system, each of which corresponds to a limited number of phonemes (maximum ۴ phonemes). While this feature is observed in ۱۱ graphemes of English writing system and the variety of their corresponding phonemes was much more than Persian writing system. Considering the fact that the extent of the occurrence of the homography feature in English writing system is significantly higher than Persian writing system, it can be stated that the orthographic depth of English writing system exceeds that of Persian writing system.
Keywords:
Authors
Abbas Ali Ahangar
Department of English Language and Literature, Faculty of Literature and Humanities, University of Sistan and Baluchestan, Zahedan, Iran
Tahereh Taromi
Department of English Language Teaching, Farhangian University, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :