Benchmarking Deep Learning Algorithms for Breast Cancer Detection: A Comprehensive Review and Evaluation Across Public Imaging Datasets

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 54

This Paper With 15 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_ISJTREND-2-4_008

تاریخ نمایه سازی: 4 آذر 1404

Abstract:

Breast cancer remains a leading cause of cancer-related mortality among women globally, emphasizing the need for early and accurate detection. This study combines a systematic review of artificial intelligence (AI) applications in breast cancer imaging with empirical benchmarking of deep learning models across public datasets. The review analyzed ۲۱ studies, highlighting convolutional neural networks (CNNs) as the dominant AI approach, with mammography being the most studied modality. Benchmarking involved evaluating a baseline CNN, ResNet-۵۰, and U-Net on datasets including DDSM (mammography), INbreast (mammography), and BUSI (ultrasound). Results demonstrated that ResNet-۵۰ significantly outperformed the baseline CNN in classification tasks, with a mean AUC improvement of ۰.۰۷۳ (p = ۰.۰۲۳). U-Net achieved robust segmentation performance on BUSI, particularly for malignant lesions (Dice coefficient = ۰.۸۷). The study underscores the superiority of transfer learning and deeper architectures in breast cancer imaging while identifying gaps in multimodal integration and explainability. Future directions include expanding to multimodal datasets, incorporating interpretability tools, and validating models in real-world settings. These findings contribute to the growing body of evidence supporting AI's role in enhancing breast cancer diagnostics and pave the way for clinically actionable solutions.

Authors

Dariush Moslemi

Cancer Research Center, Department of Radiation Oncology, Babol University of Medical Sciences, Babol, Iran.

Seyed Mohammad Hassan Hosseini

Student Research Committee Medical University of Babol, Babol, Iran.

Elham Jafarian

Department of Internal Medicine, Babol University of Medical Sciences, Babol, Iran.

Marzieh Jamshidi

Department of Internal Medicine, Babol University of Medical Sciences, Babol, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :