Artificial Intelligence and Machine Learning Approaches for Automated Interpretation Across Echocardiography, Cardiac CT, and Cardiac MRI: A Systematic Review

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 58

This Paper With 11 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_ISJTREND-2-4_001

تاریخ نمایه سازی: 4 آذر 1404

Abstract:

Cardiovascular imaging has witnessed transformative advancements through artificial intelligence (AI) and machine learning (ML), yet the integration of these technologies across multiple modalities remains underexplored. This systematic review synthesizes evidence on AI/ML approaches for automated interpretation across echocardiography, cardiac computed tomography (CT), and cardiac magnetic resonance imaging (MRI), with a focus on clinically relevant tasks. Following PRISMA guidelines, we conducted a PubMed search (۲۰۱۷–۲۰۲۵), identifying ۱,۰۹۱ records. After rigorous screening, six studies (five reviews, one empirical) met inclusion criteria. Our analysis revealed that while deep learning dominates cardiac CT and MRI applications—particularly for segmentation and disease classification—echocardiography lags in empirical validation. The sole empirical study benchmarked AI performance across CT and MRI but excluded echocardiography, highlighting a critical gap in multi-modality research. Review articles consistently emphasized the potential of AI but noted persistent challenges, including data standardization, external validation, and clinical integration. Key limitations include the predominance of single-modality studies and a lack of head-to-head comparisons between traditional ML and deep learning methods. Future research should prioritize unified frameworks encompassing all three modalities, robust clinical validation, and standardized performance metrics to bridge these gaps. This review underscores AI’s transformative potential in cardiac imaging while advocating for more comprehensive, clinically grounded studies to realize its full impact.

Authors

Sasan Shafiei

Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

Alireza Arzhangzadeh

Assistant Professor of Cardiology, Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

Roozbeh Narimani Javid

Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran

Nahid mohebbi

Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Amin Zaki Zadeh

Internal Medicine Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Ensiyeh Olama

Student Research Committee, School of Medicine, Georgian National University SEU, Tbilisi, Georgia.

Parastou Shahmohamadi

Internal Medicine Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :