A Benchmark and Meta-Analysis of Externally Validated AI Models for Cervical Cancer
Publish place: InfoScience Trends، Vol: 2، Issue: 9
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 49
This Paper With 16 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ISJTREND-2-9_005
تاریخ نمایه سازی: 9 آذر 1404
Abstract:
This study aimed to establish a rigorous benchmark of externally validated artificial intelligence (AI) models for cervical cancer to assess their clinical readiness and generalizability across key clinical tasks. We conducted a systematic review and meta-analysis following PRISMA guidelines, searching PubMed/MEDLINE and Embase for studies developing or validating AI models in cervical cancer. Inclusion was restricted to studies reporting performance on held-out external test sets. Four clinical tasks were evaluated: screening/triage for CIN۲+/CIN۳+, preoperative staging surrogates (lymph node metastasis, parametrial invasion), prognosis (overall/disease-free survival), and treatment response prediction. Data on diagnostic accuracy, C-indices, calibration, and decision-curve analysis were extracted. Risk of bias was assessed using QUADAS-۲ and PROBAST. From ۱,۶۶۲ identified records, ۱۷ studies met the inclusion criteria. For screening/triage, four externally validated studies demonstrated that AI assistance significantly improved clinician sensitivity (Δ +۱۷.۸۵%) and specificity (Δ +۴.۵۲%), while multimodal fusion with HPV genotyping achieved AUCs up to ۰.۸۹. Four staging studies showed CT and MRI-based models with external AUCs around ۰.۸۶, incorporating calibration and decision-curve analysis. Only one externally validated prognostic model was identified, showing attenuated but maintained discrimination (C-index ۰.۶۶-۰.۷۰ externally). No externally validated treatment response models were found. The benchmark reveals a stratified landscape of AI readiness in cervical cancer. Externally validated evidence supports the clinical potential of AI for screening and staging, while prognostic and treatment response modeling require further multicenter validation. External validation and standardized reporting, beyond discrimination metrics alone, are critical for translating promising algorithms into reliable clinical tools.
Keywords:
Authors
Zhila Hashemi
Department of Cardiology, Hamadan University of Medical Sciences, Hamadan, Iran.
Behrooz Mohammadkhani Pordanjani
Department of Radiology, Medicine Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Farshad Gharebakhshi
Department of Radiology, Medicine Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Seyedsina Sharif
Department of Radiology, Medicine Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Tayeb Hosseini
Department of Interventional Radiology, Tajrish Hospital, Tehran, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :