Natural Language Processing for Pharmacovigilance: Detecting Novel Sildenafil Adverse Events in Social Media

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 37

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_ISJTREND-2-7_003

تاریخ نمایه سازی: 9 آذر 1404

Abstract:

This study leverages natural language processing (NLP) and social media data to identify novel adverse effects of sildenafil, complementing traditional pharmacovigilance systems. We analyzed ۲.۹۲ million English-language posts from Twitter, Reddit, and health forums (۲۰۲۰–۲۰۲۵) using a multi-stage NLP pipeline. First, BERTweet classified sildenafil-related content (F۱=۰.۹۲۵), followed by BioClinical-BERT with CRF for named-entity recognition of adverse events (strict F۱=۰.۸۶۶). A DeBERTa-v۳ model then extracted drug–adverse event relationships (F۱=۰.۸۱۲). Statistical signal detection using proportional reporting ratios (PRR) identified ۴۲ significant adverse event signals, including eight potentially novel effects (e.g., tinnitus [PRR=۲.۸۷] and night sweats [PRR=۲.۴۶]) and six underreported effects (e.g., nasal congestion). Posts mentioning off-label sildenafil use (۱۱.۴% of corpus) showed ۱.۸-fold higher adverse event reporting rates (χ²=۱۸۲.۴, p<۰.۰۰۱). While synthetic data augmentation improved named-entity recognition marginally (+۱.۷% F۱), its impact on relation extraction was nonsignificant. The pipeline detected signals in a median of ۱۴.۲ months, demonstrating faster detection compared to spontaneous reporting systems. Expert review validated ۷۵% of novel signals as clinically plausible. These findings highlight the potential of social media mining to uncover patient-reported drug safety concerns, though challenges remain in causal inference and scalability. The study provides a reproducible framework for integrating real-world patient narratives into pharmacovigilance, offering insights that could enhance post-marketing drug safety monitoring while maintaining alignment with regulatory standards. Our open-source pipeline and validation approach advance methods for detecting emerging adverse drug reactions from unstructured patient-generated content.

Authors

Sobhan Maghoul

Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.

Setare Iranshahi

Department of Clinical Pharmacy، Shahid Beheshti University of Medical Sciences, Tehran، Iran.

Seyed Majid Heydari Divkolaei

Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.

Kiana Naderinia

Student Research Committee, Pharmacy Department, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran.

Mahdi Mahjoub

Department of Medicinal Chemistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Ensiyeh Olama

Ensiyeh Olama, student research committee, school of medicine, Georgian National University SEU, Tbilisi, Georgia.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :