ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

F azzy Wavelet coeffi cients Discriminator For ECG Arrhvthmia Detection In Two Leads

Year: 1386
COI: ICEE15_021
Language: EnglishView: 1,939
This Paper With 6 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 6 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

Payam Bahman-Bijari - Control and Intelligent Processing Center of Excellence, Electrical and Computer Engineering Department, University of Tehran, Tehran, lran , School of Cognitive Sciences, Institute for Studies in Theoreticat Physics and Nlathematics (IPNI), Tehran, Iran
Alireza Akhoundi-Asl - Control and Intelligent Processing Center of Excellence, Electrical and Computer Engineering Department, University of Tehran, Tehran, lran , School of Cognitive Sciences, Institute for Studies in Theoreticat Physics and Nlathematics (IPNI), Tehran, Iran
Fariba Bahrami
Ali Jalali - Faculty of Mechanical Engineering, Khaje Nasir Toosi University of Technology.

Abstract:

Automatic classification of cardiac arrhythmia is a challenging area in the field of heart abnormality detection. Conventional methods used to classify arrhythmia use feature based inforntation related lo ECG signal. In this paper a novel methocl is introduced, to extract specific ntedical idormation using ECG data from leads containing this information for each arrhythmia. We have shown that using L'l in addition to VII improves the results of classification In fact, in data obtained from L'l special patterns appear which deal with Lefi Bundle Branch Block Beat (LBBB) and Right Bundle Branch Block Beat (RBBB), and this information helps medical doctors to detect arrhythmia. Adding this feature to the classification algorithm increases the accuracy while resztlting in less complex classifiers. After including the dala of the leads with accurate infonnation about each anhythmia, we reduced exlrentely the number of inputs wing a Fuzzy set-based feature extraction method. Ilavelet coefficients of the ECG signal were fed into a simple preceptron neural network consisting of one hidden layer as input Since specifc leads were used high accuracy was achieved despite the reduced number of inputs and the simplicity of the network In the present work the ECC data is taken from standard MIT-BIT Arrhythmia database

Keywords:

Paper COI Code

This Paper COI Code is ICEE15_021. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/25090/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Bahman-Bijari, Payam and Akhoundi-Asl, Alireza and Bahrami, Fariba and Jalali, Ali,1386,F azzy Wavelet coeffi cients Discriminator For ECG Arrhvthmia Detection In Two Leads,15th Iranian Conference on Electric Engineering,Tehran,https://civilica.com/doc/25090

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • Usingث [14] L. Y. Shyu, Y. HH. Wu, and _ ...
  • R. Jafari, H. Noshadi, S. Ghiasi and M. Sarrafzadeh, «Adaptive ...
  • P. S. Addison, ، Wavelet transforms and the ECG: a ...
  • A. Langer, M. S. Heilman, and M. M. Mower ، ...
  • S. Chen, N. V. Thakor, and M. M. Mower ، ...
  • Detecting؛ [5] V. X. Afonso, and W. J. Tompkins Ventricular ...
  • L. Sornmo, P. O. Borjesson, _ E. Nygards, and O. ...
  • _ A. Coast, R. M. Sterm, G. G. Cano, and ...
  • B. Q. Celler and P. _ Chazal, ،Low computational _ ...
  • Proc. Iht. Conf. qy Convergent Technologies for Asia-Pacific Region. Vol. ...
  • C.S. Burrus, R.A. Gopinath and H. Guo, Introduc tion to ...
  • J. S. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms. ...
  • [[8] D. Li, 7. Pedrycs, N.J.Pizzi, *Fuzzy Vavelet Based Feature ...
  • ، Heart Disease، Baunwald، 7" edition, W B Saunders Co.. ...
  • diagnosis using neural networks, in Proc Anxu Iht. Cong. IEEE ...
  • S. Osowski, and T. H. Linh, ،ECG beat recognition using ...
  • P. S. Addison, J. N. Watson, G. R. Clegg, M. ...
  • A. Rakotom amonjy _ D. Coast, and P. marche, ، ...
  • Research Info Management

    Certificate | Report | من نویسنده این مقاله هستم
    این Paper در بخشهای موضوعی زیر دسته بندی شده است:

    اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    Scientometrics

    The specifications of the publisher center of this Paper are as follows:
    Type of center: دانشگاه دولتی
    Paper count: 67,801
    In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

    New Papers

    Share this page

    More information about COI

    COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

    The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

    Support