An Improved Hybrid Genetic Algorithm using Particle Swarm Optimization

Publish Year: 1386
نوع سند: مقاله کنفرانسی
زبان: English
View: 2,948

This Paper With 7 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

ICEE15_259

تاریخ نمایه سازی: 17 بهمن 1385

Abstract:

Generally, optimization is considered to be a complex problem which requires accurate and fast search methods. Due to slow convergence, traditional Genetic Algorithms (GA) are not eficient enough to solve this problem. Hence, a lot of efforts have been carried out to improve GA performance in terms of convergence rate and accuracy. Similar to Genetic Algorithm, Particle Swarm Optimization (PSO) is an evolutionary computational model which is based on swarm intelligence. Although Particle Swarm Optimization provides faster convergence, however it does not perform well due to the early convergence an d local maxima problem. Moreover, the tradeoff between fast convergence and optimum exploration is unavoidable. In this paper, we propose a new genetic algorithm method using Particle Swarm Optimization of individuals. In this method, all individuals of the so called common population will be promoted via Particle Swarm Optimization, before genetic operations have been accomplished. The experimental results have shown better convergence rate, more stability in dzfferent runs, and also better exploration accuracy compared to the pure search methods.

Authors

Behrouz Shahgholi Ghahfarokhi

Department of Computer Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran

Mohammad Babaeizadeh

Department of Computer Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran

Nasser Movahedinia

Department of Computer Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • T. Back and H.-P. Schwefel, ،An Overview of Evolutionary Algoritms ...
  • J.H. Holland, 4Adaptation in Natural and Artificial Systems, The University ...
  • L. Pagie, M. Mitchell 3A Comparison of Evolutionary and Co ...
  • C. Grossan, et.al., ،search Optimization Using Hybrid Particle subswarms And ...
  • R. Poli, et. al., *Extending Particle Swarm Optimization via Genetic ...
  • R.C. Eberhart, and J. Kennedy, ،A new optimizer using particle ...
  • swarm Particleء، J. Kennedy, and R.C. Eberhart, _ ptimization., ?" ...
  • R. Hassan, eft. al., 8A Copmarison Of Particle Swarm Optimization ...
  • M. Clerc and J. Kennedy., _ particle swarm- explosion, stability, ...
  • E. Ozcan and C. K. Mohan, 00Particle sWarm optimization: surfing ...
  • C. Grosan, et. al., 4Hybrid Particle Swarm- Evolutionary Algorithm for ...
  • J. Robinson, S. Sinton, R.S. Yahya, ،*Particle SWam, genetic algorithm, ...
  • Grosan C., 2004, *Solving geometrical place problems by using Evolutionary ...
  • x.H. Shi, et. al., ،A improved GA and a noveli ...
  • s. s. Fan, et. al., 6A genetic algorithm and a ...
  • نمایش کامل مراجع