An Improved Hybrid Genetic Algorithm using Particle Swarm Optimization
Publish place: 15th Iranian Conference on Electric Engineering
Publish Year: 1386
نوع سند: مقاله کنفرانسی
زبان: English
View: 2,948
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICEE15_259
تاریخ نمایه سازی: 17 بهمن 1385
Abstract:
Generally, optimization is considered to be a complex problem which requires accurate and fast search methods. Due to slow convergence, traditional Genetic Algorithms (GA) are not eficient enough to solve this problem. Hence, a lot of efforts have been carried out to improve GA performance in terms of convergence rate and accuracy. Similar to Genetic Algorithm, Particle Swarm Optimization (PSO) is an evolutionary computational model which is based on swarm intelligence. Although Particle Swarm Optimization provides faster convergence, however it does not perform well due to the early convergence an d local maxima problem. Moreover, the tradeoff between fast convergence and optimum exploration is unavoidable. In this paper, we propose a new genetic algorithm method using Particle Swarm Optimization of individuals. In this method, all individuals of the so called common population will be promoted via Particle Swarm Optimization, before genetic operations have been accomplished. The experimental results have shown better convergence rate, more stability in dzfferent runs, and also better exploration
accuracy compared to the pure search methods.
Keywords:
Authors
Behrouz Shahgholi Ghahfarokhi
Department of Computer Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
Mohammad Babaeizadeh
Department of Computer Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
Nasser Movahedinia
Department of Computer Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :