ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

Porosity estimation improvement by averaging technique from well log in Balal oil field

Year: 1390
COI: IPEC03_113
Language: EnglishView: 574
This Paper With 15 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 15 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

Asaad Fegh - M.SC of petroleum engineering, University of Tehran
Ali Hamidi Habib - M.SC of petroleum engineering, University of Tehran
Mohammad Ali Riahi - Associated professor, Institute of Geophysics, University of Tehran
Gholam Hussein Norouzi - Associated professor, University College of engineering, University of Tehran

Abstract:

Estimation of porosity in hydrocarbon reservoirs is essential for planning production operations. Lateral variations of porosity cannot easily bedelineated from measurements made at sparsely located wells(Soubotcheva, ٢٠٠٦; Hampson and others, ٢٠٠١; Soto, ١٩٩٨). So, the integration of ٣D seismic data with petrophysical measurements cansignificantly improves the spatial distribution of porosity. Despite sparse well data, ٣D seismic data provide a dense and regular areal sampling ofthe acoustic properties of the producing reservoirs. After processing of ٣D data, the lateral variations of seismic amplitudes can be transformed into impedances by integrating it from the well and geological data, which in turn are indirectly related to porosity (Pramanik and others, ٢٠٠٤; Todorov, ٢٠٠٠; Angelier and Carpi, ١٩٨٢; de Buyl and others, ١٩٨٦).Artificial neural networks (ANNs) are very suitable technique in softcomputing for signal processing. According to a set of multivariate input and target measurements, ANNs can learn and extract their complex nonlinearrelationships. The relationships can be applied to estimate the target variables when the actual measurements are not available (Wong and others, ٢٠٠٢; Ronen and others, ١٩٩٤). Previous studies by this method have shown good results in field applications, compared to the wellestablishedmethods such as multiple linear regression and discriminant analysis. So, this method has been used in the paper (Al-Bulushi andothers, ٢٠١٠; Wong and others, ٢٠٠٧; Wong and others, ٢٠٠٢). Because frequencies of well logs and attributes aren’t identical, onlysamples of attributes that is correlated temporally with samples of target log are inserted to calculations. Multivariate regression method had beendeveloped by Hampson to solve this problem that convolution filters are used instead of single points (Hampson and others, ٢٠٠٠; Russell andothers, ١٩٩٧; Russell, B. H., ٢٠٠٤). This method is equivalent with creating a set of new attributes that in comparison with main attributes had beenshifted temporally. This time shifts are coincident with convolution filters. But many samples, on the different attributes, aren’t inserted intoestimation process because of frequencies distinction and in fact these samples don’t have any role in estimation. It can be inserted average oflogs instead of porosity logs because of the studied horizon has homogeneity petrophysically and in reservoir properties and there is littlechanges in porosity. So with averaging from logs and attributes in the horizon, both the problem of distinct frequencies is solved and lower errorare obtained. So, main goal of this paper is studying of results obtained from porosity estimation by using artificial neural network before and after averaging from logs and seismic attributes in studied reservoir horizon. To achieve the defined goal, one of the southern Iranian oil fields is selected.

Paper COI Code

This Paper COI Code is IPEC03_113. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/260088/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Fegh, Asaad and Hamidi Habib, Ali and Riahi, Mohammad Ali and Norouzi, Gholam Hussein,1390,Porosity estimation improvement by averaging technique from well log in Balal oil field,3rd Iranian Petroleum Engineering Congress,Tehran,https://civilica.com/doc/260088

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • De Buyl, M., Guidish, T., and Bell, F., 1986, Statistical ...
  • Wong, P. M., Aminzadeh, F., and Nikravesh, M., 2002, soft ...
  • Al Bulushi, N. I., King, P. R., Blunt, M. J., ...
  • Al Dabbas, M., Jassim, _ and Qaradaghi, A., 2010, Sedi ...
  • Angelier, G. P., and Carpi, R., 1982, Porosity prediction from ...
  • Broomhead, D. S., and Lowe, D., 1988, Multivariable functional inter- ...
  • Hagan, M. T., Demuth, H. B., and Beale, M., 1996, ...
  • Hampson, D., and Russell, B. H., 2007, Emerge module, Theory ...
  • 0.1 _ 07/s12517-0 1 0-0256-5. ...
  • Fausett, L., 1994, Fu n damentals of Neural Networks: Architectu ...
  • A., 2001, Use of multiatribute .ل Hampson, D., Schuelk, _ ...
  • Hampson, D., Todorov, T., and Russell, B., 2000. _ using ...
  • T., and Mizutani, E., 1997, Neuro-fuzzy and soft ...
  • Mohaghegh, D. S., Toro, J, Wilson, T. H., Artun, E., ...
  • Characterizat _ : Final Report Prepared for U.S. Department of ...
  • multiattribute transforms: A case study, Geophysics, V. 69, p. 352-372. ...
  • Russell, B. H., 2004, the application of multivariate statistics and ...
  • Russell, B.H., Lines, L.R., and Hampson, D. P., 2003, Application ...
  • Attributes and Well Log Data using Artificial Intelligence, thesis: King ...
  • Sundararajan _ N., Saratchand ran _ P., and Ying, W. ...
  • Todorov, I. T., 2000. _ Integration of 3C-3D seismic data ...
  • Tutmez, B., 2010 _ Assessment of porosity using spatial correlation ...
  • Wong, P. M., Jian, F. X., Taggart, I. J., 2007, ...
  • Sou botcheva _ N., and Stewart, R. R., 2006, Estimating ...
  • Research Info Management

    Certificate | Report | من نویسنده این مقاله هستم

    اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    Scientometrics

    The specifications of the publisher center of this Paper are as follows:
    Type of center: دانشگاه دولتی
    Paper count: 68,023
    In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

    مقالات پیشنهادی مرتبط

    New Papers

    Share this page

    More information about COI

    COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

    The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

    Support