ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
CIVILICAWe Respect the Science
Publisher of Iranian Journals and Conference Proceedings
Paper
Title

پیش بینی فشار رسوب آسفالتین و فشار نقطه حباب طی تزریق گاز co2 با استفاده نظریه های از هوش مصنوعی

Year: 1390
COI: IPEC03_141
Language: PersianView: 560
This Paper With 17 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 17 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

رضا بهوندی - دانشگاه آزاد اسلامی واحد علوم و تحقیقات
احسان خامه چی - دانشگاه صنعتی امیرکبیر
فریبرز رشیدی - دانشگاه صنعتی امیرکبیر

Abstract:

با وجود آنکه تزریق امتزاجیco2یکی از رایج ترین روش های ازدیاد برداشت از نفت می باشد. می تواند باعث تغیر خواص سیالات نفتی و نیز بروز برخی مشکلات مانند تشکیل رسوب آسفالتین شود, که خود منجر به کاهش تزریق پذیری و قابلیتتولید چاههای نفت و گرفتگی دهانه چاه یا تسهیلات سرچاهی میگردد. حداکثر مقدار تشکیل رسوب آسفالتین در نزدیکی فشار و غلظت اشباع سیال می باشد.با توجه به توضیحات داده شده فشار شروع انعقاد آسفالتین 1 و همچنین فشار بیشترین حجم تشکیل رسوب فشار نقطه حباب 2 از اهمیت خاصی جهت بهینه سازی عملیات تزریق امتزاجی co2 برخوردار می باشد. هدف این تحقیق پیش بینی فشار شروع انعقاد آسفالتین و فشار نقطه حباب سیال مخزن با استفاده از مدل های توسعه داده شده هوش مصنوعی که شامل یک نرم افزار شبیه ساز به نامIntelligent Proxy Simulator(IPS بر اساس ساختار شبکه های عصبی مصنوعی با استفاده از دو الگوریتم آموزشی پس انتشار خطا 3 و الگوریتم بهینه سازی اجتماع ذرات 4 می باشد. این دو پارامتردر دو مرحله به صورت همزمان و با یک خطا و در مرحله دیگر به صورت تک خروجی و دو خطا پیش بینی شده اند. مدل دیگر برگرفته شده از نظریه های هوش مصنوعی سامانه استنتاج عصبی- فازی است که ترکیبی از منطق فازی و شبکه هایعصبی می باشد. که در ادامه جهت ارزیابی نتایج پیش بینی های شبکه های توسعه داده شده هوش مصنوعی در پیش بینیفشار شروع انعقاد آسفالتین از مدل جامد ترمودینامیکی با استفاده از نرم افزارWinprop و جهت اعتبار سنجی نتایج حاصل شده در پیش بینی فشار نقطه حباب از یک رابطه خطی به نامStandingاستفاده شده است. در پایان نتایج بدست آمده درمدل های هوش مصنوعی در پیش بینی فشار شروع انعقاد آسفالتین و فشار نقطه حباب طی تزریقco2نتیجه بسیار رضایت بخش تری به ترتیب نسبت به مدل جامد ترمودینامکی و مدلStandingداشته اند همچنین موکد این مطلب می باشد که در شرایطی که نیاز به پیش بینی دو یا چندین پارامتر برای یک مسئله پیچیده باشد به جای محاسبه تک تک آنها با روش های متفاوت و خطاهای غیر یکسان و نا برابر می توان تمامی پارامترهای مورد نظر را با خطای برابر و نسبتا پایین نسبت به داده های آزمایشگاهی به وسیله شبکه عصبی مصنوعی با استفاده از شبیه سازIPSو مدلANFISپیش بینی کرد.

Keywords:

فشار شروع رسوب آسقالتین،فشارنقطه حباب، ، الگوریتم پس انتشار خطا, الگوریتم بهینه سازی ازدحام ذرات ، سامانه استنتاج عصبی – فازی

Paper COI Code

برای لینک دهی به این Paper می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت Paper در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/260116/

How To Citation:

در صورتی که می خواهید در اثر پژوهشی خود به این Paper ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
بهوندی، رضا و خامه چی، احسان و رشیدی، فریبرز،1390،پیش بینی فشار رسوب آسفالتین و فشار نقطه حباب طی تزریق گاز co2 با استفاده نظریه های از هوش مصنوعی،سومین کنگره ملی مهندسی نفت،تهران،،،https://civilica.com/doc/260116

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این Paper اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1390، بهوندی، رضا؛ احسان خامه چی و فریبرز رشیدی)
برای بار دوم به بعد: (1390، بهوندی؛ خامه چی و رشیدی)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مPaperقاله لینک شده اند :

  • منهاج، محمد باقر، مبانی شبکه های عصبی ؛ جلد اول، ...
  • - Asghari, SPE, M. Dong, SPE, "Development of a Correlation ...
  • : Peramanus .et, al, "Flow loop apparatus to study the ...
  • : Hirschberg A., "Influence of temperature and pressure on asphaltene ...
  • : Srivastava, R. S.; Huang, S. S. Asphaltene Deposition during ...
  • _ Takahashi, S.; Hayashi, Y.; Yazawa, N.; Sarma, H. Characteri ...
  • : Verdier, S.; Carrier, H.; Andersen, S. I.; Daridon, J.-L. ...
  • : Sunil kokal , Abdullah Al-Ghamdi, Dimitrios Krinis, _ Asphaltene ...
  • : J. Kennedy and R. Eberhart, _ TParticleSwarm Optimization, " ...
  • Research Info Management

    Certificate | Report | من نویسنده این مقاله هستم
    این Paper در بخشهای موضوعی زیر دسته بندی شده است:

    اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    Reviews

    5.00
    1 تعداد پژوهشگران نظر دهنده
    5 1
    4 0
    3 0
    2 0
    1 0

    علم سنجی و رتبه بندی Paper

    مشخصات مرکز تولید کننده این Paper به صورت زیر است:
    نوع مرکز: دانشگاه آزاد
    تعداد مقالات: 30,797
    در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

    مقالات پیشنهادی مرتبط

    New Papers

    Share this page

    More information about COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

    Support