ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
CIVILICAWe Respect the Science
Publisher of Iranian Journals and Conference Proceedings
Paper
Title

Permeability Estimation by Artificial Intelligence Methods from Wireline Logs; A Case Study From One of the Iranian Oil Reservoirs

Year: 1390
COI: IPEC03_154
Language: EnglishView: 655
This Paper With 17 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 17 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

Haniyeh Jalayeri - Department of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology
Amin Malekpoor - Department of Mining, Metallurgy and Petroleum Engineering, Amirkabir University of Technology
Aboulghasem Kamkar Rouhani - Department of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology
Mansour Ziaii - Department of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology

Abstract:

Reservoir characterization plays a crucial role in modern reservoir management.The reservoir characteristics include porosity, permeability, facies distribution, anddepositional environment. Permeability is an important parameter associated with the characterization of hydrocarbon reservoirs. Estimation of permeability fromwireline logs is important yet difficult task to encounter in geophysical formation evaluation. This study was carried out permeability estimation in a carbonate gasreservoir with the artificial intelligence methods. Fuzzy logic and neuro-fuzzy method that based on fuzzy logic presented good results. It’s shown in present work, when the number of data is low and the formation is complex (such as carbonate reservoirs), the methods based on fuzzy logic will have appropriate performance

Keywords:

Permeability; Fuzzy logic; Neuro-fuzzy method; Carbonate gas reservoir

Paper COI Code

برای لینک دهی به این Paper می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت Paper در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/260129/

How To Citation:

در صورتی که می خواهید در اثر پژوهشی خود به این Paper ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Jalayeri, Haniyeh and Malekpoor, Amin and Kamkar Rouhani, Aboulghasem and Ziaii, Mansour,1390,Permeability Estimation by Artificial Intelligence Methods from Wireline Logs; A Case Study From One of the Iranian Oil Reservoirs,سومین کنگره ملی مهندسی نفت,تهران,,,https://civilica.com/doc/260129

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این Paper اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1390, Jalayeri, Haniyeh؛ Amin Malekpoor and Aboulghasem Kamkar Rouhani and Mansour Ziaii)
برای بار دوم به بعد: (1390, Jalayeri؛ Malekpoor and Kamkar Rouhani and Ziaii)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مPaperقاله لینک شده اند :

  • El-Shahat Afify, W., Ibrahim Hassan, A., 201 .Permeability and Porosity ...
  • Hurtado, N., Aldana, M., Torres, J., 20 09.Comparsion between neuro-fuzzy ...
  • Saemi, M., Ahmadi, M., 2008 .Integration of genetic algorithm and ...
  • Tahmasebi, P., Hezarkhani, A., 2010 .Application of Adaptive Neuro-Fuzzy Inference ...
  • Research Info Management

    Certificate | Report | من نویسنده این مقاله هستم
    این Paper در بخشهای موضوعی زیر دسته بندی شده است:

    اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    علم سنجی و رتبه بندی Paper

    مشخصات مرکز تولید کننده این Paper به صورت زیر است:
    نوع مرکز: دانشگاه دولتی
    تعداد مقالات: 7,669
    در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

    مقالات پیشنهادی مرتبط

    New Papers

    Share this page

    More information about COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

    Support