Using Zeolite membrane instead of polymeric membrane in water reverse osmosis process

Publish Year: 1390
نوع سند: مقاله کنفرانسی
زبان: English
View: 625

This Paper With 51 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

IPEC03_212

تاریخ نمایه سازی: 7 تیر 1393

Abstract:

In water treatment using reverse osmosis polymeric membrane is used in the water input pressure is high. Furthermore, this type of membrane can not be recycled. In this project, using zeolite membrane, types A, Y, and MFI in water treatment is investigated. In addition the performance of polymeric and zeolite membranes to remove organic compounds will be investigated. Finally, the maximum TDS in input water will be examined. A study on the reverse osmosis desalination of aqueous solutions using α-alumina-supported MFI-type zeolite membranes. A Na+ rejection of 76.7% with a water flux of about 0.112 kg m−2 h−1 was obtained for a 0.1 M NaCl feed solution under an applied pressure of 2.07 MPa. For a complex feed solution containing 0.1 M NaCl + 0.1 M KCl + 0.1 M NH4Cl + 0.1 M CaCl2 + 0.1 M MgCl2, rejections of Na+, K+, NH4+, Ca2+, and Mg2+ reached 58.1%, 62.6%, 79.9%, 80.7%, and 88.4%, respectively, with a water flux of 0.058 kg m−2 h−1, after 145 h of operation at an applied pressure of 2.4 MPa. Because of the extremely stable chemical, mechanical, and thermal properties, zeolite membranes show great advantages in difficult situations such as operations in a strong solvent environment, or those requiring high temperatures and high pressures. The influencing factors, including operating pressure, temperature, and ion concentration, on the RO performance of zeolite membranes are investigated. The charge density, size, and apparent dynamic hydration number of the ion as well as the mobility of the hydrated ion were found to have critical influences on ion diffusion and water permeation through the polycrystalline zeolite membrane. Zeolites are microporous aluminosilicate materials with extremely uniform pores defined by crystal structures. The effective pore sizes of the familiar 12-member ring FAU, 10-member ring MFI, and 8-member ring A zeolites are 0.74 nm, 0.56nm, and 0.42 nm, respectively. These subnanometer channels are sufficiently large for transport of water molecules (dynamic size ~0.29 nm). In aqueous solutions, both cations and anions form hydrated complexes with ―cluster‖ sizes larger than the zeolite pores. For example, the hydrated Na+ ions,3[Na(H2O)n]+, have effective sizes of 0.8 – 1.0 nm, which is too large to enter the small-pore zeolites such as A and MFI types.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Glater, J. (1998). "The early history of reverse osmosis membrane ...
  • Herreros, B., The X-Bav Diffraction Zeolite Database on the web. ...
  • Meier, W. M., et. al., The Atlas ofZeolite Structure Types ...
  • Subhash Bhatia, Zeolite Catalysis: Principles and Applications, CRC Press, Inc., ...
  • Ribeiro, F. R., et. al., ed., Zeolites: Science and Technology, ...
  • lon Exchangers (K. Dorfner, ed.), Walter de Gruyter, Berlin, 1991. ...
  • lon exchange (D. Muraviev, V. Gorshkov, A. Warshawsky), M. Dekker, ...
  • A. A. Zaoorodni. Ion Exchande Materials: Properties and Appl ications. ...
  • L. Li, J. Dong, T.M. Nenoff and R Lee, Desalination ...
  • E. Piera, M.A. Salomon, J. Coronas, M. Menendez and J. ...
  • M. Nomura, T. Yamaguchi and S. Nakao, Ethanol/water transport through ...
  • J. Caro, M. Noack, P. Kolsch and . Schafer, Micropor. ...
  • Y.S. Lin, I. Kumakiri, B.N. Nair and H. Alsyouri, Sep. ...
  • Q. Liu, R.D. Noble, J.L. Falconer and H.H. Funke, J. ...
  • K. Kusakabe, T. Kuroda and S Morooka. J. Membr. Sci., ...
  • J. Dong, W. Liu and Y.S. Lin, AIChE J., 46 ...
  • Z. Lai, G. Bonilla, I. Diaz, J.G. Nery, K. Sujaofi, ...
  • J. Lin and S. Murad, Molec. Phys., 99 (2001) 1175. ...
  • F.T. Tao, S. Curtice, R.D. Hobbs, J.L. Sides and J.D. ...
  • X.H. Zhu and M. Elimelech, J. Environ. Eng. ASCE, 121 ...
  • C. Visvanathan, N. Boonthanon, A. Sathasivan and V. Jegatheesan, Desalination, ...
  • E.M. Gwon, M.J. Yu, H.K. Oh and Y.H. Ylee, Water ...
  • H.M. van Veen, Y.C. van Delft and C.W.R. Engelen and ...
  • _ Kumakiri, T. Yamaguchi and S.I. Nakao, J. Chem. Eng. ...
  • L. Li, J. Dong, T.M. Nenoffand R. Lee, J. Membr. ...
  • S. Chowdhuri and A. Chandra, J. Chem. Phys., 115 (2001) ...
  • Y. Yan, M.E. Davis and G.R. Gavalas, J. Membr. Sci., ...
  • J. Dong, Y.S. Lin, M.Z.C. Hu, R.A. Peascoe and E.A. ...
  • Z.A.E.P. Vroon, K. Keizer, A.J. Burggraaf and H. Verweij, J. ...
  • J. Dong, K. Wegner and Y.S. Lin, J. Membr. Sei., ...
  • R.W. Impey, P.A. Madden and I.R. McDonald, J. Phys. Chem., ...
  • G.W. Neilson and J.E. Enderby, Adv. Inorg. Chem., 34 (1989) ...
  • L. Helm and A.E Merbach, Coord. Chem Rev., 187 (1999) ...
  • M.Y. Kiriukhin and K.D. Collins, Biophys. Chem., 99 (2002) 155-168 ...
  • K.K. Yousif and A.F.B. Frederick, Geochim. Cosmoehim. Aeta, 37 (1973) ...
  • M. Ishiguro, T. Matsuura andC. Detellier, J. Membr. Sci., 107 ...
  • KL. Yang, S. Yiacoumi and C. Tsouris, J. Chem. Phys., ...
  • C.H. Hamann, A. Hamnett and W. Vielstich, Electro- chemistry, Wiley-VCH, ...
  • J. Hubbard and L. Onsager, J. Chem. Phys., 67 (1977) ...
  • M. Pavlov, E.M. Siegbahn and M. Sandstrom, J. Phys. Chem. ...
  • R. Biswas and B Bagchi, J. Chem. Phys., 106 (1997) ...
  • S. Chong and F. Hirata, J. Chem. Phys., 111 (1999 ...
  • S. Chowdhuri and A. Chandra, J. Chem. Phys, 118 (2003) ...
  • _ Bakr, J. Hurter and G. Palinkas, J. Chem. Phys., ...
  • Breit, G. N.: "Produced Water Database", USGS, 2003, en- ergy.cr. ...
  • Lin, J., and Murad, S.: "A computer simulation study of ...
  • Li, LX., Dong, JF., Nenoff, TM., and Lee, R.: "Reverse ...
  • Li, LX., Dong, JF., Nenoff, TM., and Lee, R.: "Desalination ...
  • Li, LX., Ryan, A., Nenoff, TM., and Lee, R.: "Purification ...
  • Li, S., Wang, X., Beving, D., Chen, ZW., and Yan, ...
  • Kumakiri, I., Yamaguchi, T., and Nakao, SI.: "Application of a ...
  • J. Lin and S. Murad, A computer simulation study of ...
  • S. Murad, K. Oder and J. Lin, Molecular simulation of ...
  • _ Kumakiri, T. Yamaguchi and S. Nakao, Application of a ...
  • J. Dong, Y.S. Lin, M.Z.C. Hu, R.A. Peascoe and E.A. ...
  • J. Caro, M. Noack, P. Kolsch and R. Schafer, Zeolite ...
  • Dong, JH., Wegner, K., and Lin, YS.: "Synthesis of submicro ...
  • D.M. Ruthven, Principles of adsorption and adsorption processes, John Wiley ...
  • M.A. Malusis and C.D. Shackelford, Chem ico-osmotic efficiency of a ...
  • M. Kiriukhin and K.D. Collins, Dynamic hydration numbers for biologically ...
  • M. Pavlov, P.E. Siegbahn and M. Sandstrom, Hydration of beryllium, ...
  • G. Palinkas, T. Radnai, G.I. Szasz and K. Heinzinger, The ...
  • S. Chowdhuri and A. Chandra, Molecular dynamics simulations of aqueous ...
  • C.H. Hamann, A. Hamnett and W. Vielstich, El ectroch emistry, ...
  • نمایش کامل مراجع