CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

Mathematical models of phenomena bioheat transfer in biological tissues

عنوان مقاله: Mathematical models of phenomena bioheat transfer in biological tissues
شناسه ملی مقاله: NCTCC03_168
منتشر شده در سومین همایش ملی فن آوری های نوین شیمی و مهندسی شیمی در سال 1393
مشخصات نویسندگان مقاله:

Maedeh nouri - Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan ,Iran
ehsan Firuzfar - Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan ,Iran
Ali Arasteh Nodeh - Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan ,Iran
Mohammad Firuzmand - Assistant Professor Iranian Research Organization for Science & Technology (IROST) Tehran Iran

خلاصه مقاله:
Heat transfer in living tissues is a complicated process because it involves a combination ofthermal conduction in tissues, convection and perfusion of blood, and metabolic heat production.Over the years, several mathematical models have been developed to describe heat transferwithin living biological tissues. In this article bioheat transfer and the mathematical models forevaluating the heat transfer within biological tissues are presented. Firstly, concept and history ofbioheat transfer, the structure of living tissues with blood perfusion are explained and then on themathematical models of heat transfer in living tissues are focused. A brief description of some ofthe most important bioheat models (i.e. Pennes (1948) model, Wulff (1974) model, Klinger(1974) model, Chen and Holmes (1980) model and so on) is presented. The most widely usedbioheat model was introduced by Pennes. Pennes proposed a new simplified bioheat model todescribe the effect of blood perfusion and metabolic heat generation on heat transfer within aliving tissue. The volume averaging theory (VAT) established in the field of fluid-saturatedporous media has been successfully exploited to derive a general set of bioheat transfer equationsfor blood flows and its surrounding biological tissue. A closed set of macroscopic governingequations for both velocity and temperature fields in intra- and extra vascular phases has beenestablished, for the first time, using the theory of anisotropic porous media. Two individualmacroscopic energy equations are derived for the blood flow and its surrounding tissue under thethermal non-equilibrium condition as named two- energy equation model and three- energyequation model. The two-energy equation model has been extended to the three-energy equationversion, in order to account for the countercurrent heat transfer between closely spaced arteriesand veins in the circulatory system and its effect on the peripheral heat transfer.

کلمات کلیدی:
bioheat transfer, Mathematical models, thermoregulation, volume averaging, porous media

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/283490/