Liquid-Liquid Equilibria of Binary Polymer Solutions Using a Free-Volume UNIQUAC-NRF Model
Publish place: 9th National Iranian Chemical Engineering Congress
Publish Year: 1383
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,807
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NICEC09_417
تاریخ نمایه سازی: 14 فروردین 1386
Abstract:
In this work, a free-volume model based on the UNIQUAC-NRF model developed by Haghtalab and Asadollahi was proposed. While the combinatorial part of the proposed model for activity coefficient takes the same form as that of the entropic free-volume (entropic-FV) model, the residual part is similar to that of in the UNIQUAC-NRF model. The proposed model, i.e., the FV-UNIQUAC-NRF model overcomes the main
shortcoming of the original UNIQUAC-NRF model in predicting the lower critical solution temperature (LCST) for polymer solutions. The proposed model was applied to correlate the experimental data of Liquid-Liquid Equilibria (LLE) for various binary polymer solutions. The results obtained from the FV-UNIQUAC-NRF model were compared with those obtained from the FV-UNIQUAC model. The results of the proposed model show that the FV-UNIQUAC-NRF model can accurately correlate the experimental data for LLE of polymer solutions studied in this work. Another clear advantage of the proposed model is its capability in predicting the LCST for binary polymer solutions.
Keywords:
Authors
Radfarnia
Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
Taghikhani
Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
Ghotbi
Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
Kontogeorgis
Centre for Phase Equilibria and Separation Processes (IVCSEP), Department of Chemical Engineering, Technical University of Denmark, DK-۲۸۰۰ Lyngby, Denmark
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :