ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

Toward a Reliable Model for the Prediction of CO2-Crude Oil MMP Using an Intelligent Approach

Year: 1393
COI: NIPC02_063
Language: EnglishView: 713
This Paper With 5 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 5 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

Abdolhossein Hemmati Sarapardeh - PhD student of Petroleum Engineering, Amirkabir University of Technology,
Mohammad Hossein Ghazanfari - PhD of Chemical Engineering, Sharif University of Technology
Shahab Ayatollahi - PhD of Chemical Engineering, Sharif University of Technology
Mohsen Masihi - PhD of Chemical Engineering, Sharif University of Technology

Abstract:

Multiple contact miscible floods such as CO2 injection has been considered as an attractive enhanced oil recovery technique especially for conventional reservoirs. A key parameter in design of CO2 miscible floods is minimum miscibility pressure (MMP), which is normally determined through expensive and time consuming laboratory experiments. Therefore, developing a quick and reliable model for prediction of MMP is inevitable. In this communication, a new reliable model on the basis of feed forward artificial neural network is presented. The input parameters of the developed model are reservoir temperature, reservoirs oil composition, and injected gas composition. Statistical and graphical error analyses have been employed to compare the developed model with the available models for the prediction of MMP. The results indicated that the developed model is more reliable and accurate over existing models, in a wide range of thermodynamic and process conditions. Finally, the leverage approach, in which the statistical hat matrix, Williams plot, and the residuals of the model results leads to identification of the likely outlier has been performed. The results showed that only two experimental MMP data points located out of the applicability domain of the proposed model and therfore, the developed model was found could be reliable enough for the prediction of CO2- reservoir oil MMP.

Keywords:

Paper COI Code

This Paper COI Code is NIPC02_063. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/309376/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Hemmati Sarapardeh, Abdolhossein and Ghazanfari, Mohammad Hossein and Ayatollahi, Shahab and Masihi, Mohsen,1393,Toward a Reliable Model for the Prediction of CO2-Crude Oil MMP Using an Intelligent Approach,The Second National Iranian Petroleum Conference,Kerman,https://civilica.com/doc/309376

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • Shokir, E.M.E.-M., CO< sub> 2</sub>-oil minimum miscibility pressure model for ...
  • </sub> streams. Journal of Petroleum Science and Engineering, 2007. 58(1): ...
  • Holm, L. and V. Josendal, Mechanisms of oil displacement by ...
  • Rathmell, J., F. Stalkup, and R. Hassinger. A laboratory investigation ...
  • Alston, R., G. Kokolis, and C. James, CO2 minimum miscibility ...
  • Sebastian, H., R. Wenger, and T. Rener, Correlation of minimum ...
  • Eakin, B. and F. Mitch. Measurement and correlation of miscibility ...
  • Harmon, R. and R. Grigg, Vapor-Density Measuremet for Estimating Minimum ...
  • Emera, M.K. and H.K. Sarma, Use of genetic algorithm to ...
  • Jacobson, H., Acid gases and their contribution to miscibility. Journal ...
  • Graue, D. and E. Zana, Study of a possible CO2 ...
  • Metcalfe, R.S., Effects of impurities on minimum miscibility pressures and ...
  • Thakur, G., C. Lin, and Y. Patel. CO2 Minitest, Little ...
  • Gharbi, R. and A. Elsharkawy, Neural network model for estimating ...
  • Dong, M., et al., A comparison of CO= sub> 2</subz ...
  • Bon, J., M. Emera, and H. Sarma. An Experimental Study ...
  • Zabihi, R., et al., Artificial neural network for permeability damage ...
  • Kaydani, H., A. Mohebbi, and A. Baghaie, Permeability prediction based ...
  • Yellig, W. and R. Metcalfe, Determination and Prediction of CO2 ...
  • Hemmati -Sarapardeh, _ et al., Asphaltene precipitation due to natural ...
  • Research Info Management

    Certificate | Report | من نویسنده این مقاله هستم

    اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    Scientometrics

    The specifications of the publisher center of this Paper are as follows:
    Type of center: دانشگاه دولتی
    Paper count: 21,194
    In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

    New Papers

    Share this page

    More information about COI

    COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

    The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

    Support