Real Time Implementation Fuzzy Neural Networks Methods for Prediction Pseudo Range Correction
عنوان مقاله: Real Time Implementation Fuzzy Neural Networks Methods for Prediction Pseudo Range Correction
شناسه ملی مقاله: ECDC08_066
منتشر شده در هشتمین کنفرانس بین المللی تجارت الکترونیک با رویکرد بر اعتماد الکترونیکی در سال 1393
شناسه ملی مقاله: ECDC08_066
منتشر شده در هشتمین کنفرانس بین المللی تجارت الکترونیک با رویکرد بر اعتماد الکترونیکی در سال 1393
مشخصات نویسندگان مقاله:
Mohammad Hossein Refan - Faculty of Electrical and Computer Engineering, Shahid Rajaee Teacher Training University
Adel Dameshghi - Faculty of Electrical and Computer Engineering, Shahid Rajaee Teacher Training University
Mehrnoosh Kamarzarrin - Faculty of Electrical and Computer Engineering Shahid Beheshti University
خلاصه مقاله:
Mohammad Hossein Refan - Faculty of Electrical and Computer Engineering, Shahid Rajaee Teacher Training University
Adel Dameshghi - Faculty of Electrical and Computer Engineering, Shahid Rajaee Teacher Training University
Mehrnoosh Kamarzarrin - Faculty of Electrical and Computer Engineering Shahid Beheshti University
This study applied Fuzzy Neural Network (FNN) model to predict Pseudo-range Corrections (PRC) that is important for Real Time Differential Global Positioning System (RTDGPS) accuracy. Online training for real-time prediction of the PRC enhances the continuity of service on the differential correction signals and therefore improves the positioning accuracy. With a given set of data, the fuzzy neural networks (FNN) can online predict the PRC precisely when the PRC signal is lost for a short period of time. The experiments show that the prediction total RMS errors are less than 0.23 meter.
کلمات کلیدی: RTDGPS-FNN- PRC- Prediction-RTCM
صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/316954/