ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

پیش بینی نرخ نفوذ ماشین حفار TBM با شبکه عصبی مصنوعی و تحلیل اماری رگرسیون خطی چند متغیره

Year: 1393
COI: IRMC05_034
Language: PersianView: 464
This Paper With 9 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 9 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

بیژن افراسیابیان - دانشگاه آزاد اسلامی واحد تهران جنوب گروه مهندسی معدن تهران
عباس آقاجانی بزازی - دانشگاه آزاد اسلامی واحد سوادکوه گروه مهندسی معدن سوادکوه
نوید حسینی علائی - دانشگاه آزاد اسلامی واحد تهران جنوب گروه مهندسی معدن تهران

Abstract:

امروزه استفاده از ماشین های حفار تمام مقطع در صنعت تونل سازی بسیار گسترش یافته است. از این رو تعیین و ارزیابی پارامترهای تاثیرگذار بر روی عملکرد این ماشین ها به دلیل مسائل اقتصادی و همچنین هزینه های سنگین حفاری از اهمیت ویژه ای برخوردار است پیش بینی میزان نرخ نفوذ از جمله مهمترین عوامل در ارزیابی عملکرد ماشین حفار تمام مقطع به شمار می رود. پارامترهای تاثیرگذار بر روی نرخ نفوذ دستگاه حفار تمام مقطع به دو گروه اصلی پارامترهای مربوط به شرایط زمین و پارامترهای مربوط به ماشین حفار تقسیم می شوند. در این مطالعه از دو روش شبکه های عصبی مصنوعی و رگرسیون خطی چند متغیره جهت پیش بینی میزان نرخ نفوذ ماشین حفاری استفاده شده است در این پژوهش تونل انتقال آب کرج- تهران واقع در استان البرز به عنوان مطالعه موردی انتخاب شد. در ابتدا اطلاعات حاصل از حفاری در پروژه تونل انتقال آب کرج- تهران جمع آوری و پارامترهای تاثیرگذار بر روی میزان نرخ نفوذ مشخص شده است. در ادامه پس از انتخاب مناسب ترین شبکه عصبی آنالیز حساسیت بر روی هر یک از این پارامترها صورت گرفته است. مقایسه نتایج حاصل از دو روش مذکور نیز بر مبنای شاخص هایی نظیر ضریب تعیین، میانگین مربعات خطا، و جذر میانگین مربعات خطا صورت گرفت. نتایج حاصل از تحلیل ها نشان داد که مدل انتخاب شده از شبکه عصبی مصنوعی با شش پارامتر ورودی و دو لایه پنهان با هشت و شانزده نرون، دارای ضرب تعیین به مراتب بالاتر و میزان خطای کمتری نسبت به روش رگرسیون خطی چند متغیره است. در این حالت میزان ضرایب تعیین برای شبکه عصبی و رگرسیون خطی چند متغیره به ترتیب برابر با 0/991 و 0/861 اندازه گیری شد. نتایج حاصل شده از انالیز ها نشان دهنده تطابق بیشتر مقادیر پیش بینی شده توسط شبکه عصبی با مقادیر واقعی است.

Keywords:

خصوصیات توده سنگ , نرخ نفوذ , شبکه های عصبی مصنوعی , رگرسیون خطی چند متغیره

Paper COI Code

This Paper COI Code is IRMC05_034. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/318514/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
افراسیابیان، بیژن و آقاجانی بزازی، عباس و حسینی علائی، نوید،1393،پیش بینی نرخ نفوذ ماشین حفار TBM با شبکه عصبی مصنوعی و تحلیل اماری رگرسیون خطی چند متغیره،5th Iranian Rock Mechanics Conference ،Tehran،https://civilica.com/doc/318514

Research Info Management

Certificate | Report | من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:

اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

Scientometrics

The specifications of the publisher center of this Paper are as follows:
Type of center: Azad University
Paper count: 10,671
In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

New Papers

Share this page

More information about COI

COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

Support