ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

Development of an artificial neural network model to predict future oil production rates in a sandstone reservoir under gas injection

Year: 1393
COI: FNCOGP01_045
Language: EnglishView: 911
This Paper With 17 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 17 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

Bahram Habibnia - PhD, Faculty member at Abadan Institute of Technology
Arash Javadi - M.A studen
Nader Fathianpour - PhD, Faculty member at Isfahan University of Tehnology

Abstract:

In petroleum industry there have always been an urge to improve hydrocarbon recovery, especially in the depleted fields in which the reservoir pressure is not high enough to satisfy the economic goals of theowners. Low reservoir pressure, unrecoverable oil trapped in the reservoir, etc. are amongst many reasonsthat make the use of recovery methods other than the primary techniques inevitable. Enhanced oil recovery (EOR) is a generic term for those techniques which are employed to increase therecoverable oil from such reservoirs. Gas injection has proved to be one the most effective and as a result most common EOR methods in thepetroleum industry. This method helps maintain the reservoir pressure and also would mix with thetrapped oil and lower its viscosity and push it towards the production wells. As the gas injection project like any other EOR method is going to be rather expensive to be applied in a reservoir, prediction of the field responses to the injection and prediction of the production rate resulting from the injection process isof great importance as these will lead to an optimized injection scheme. In this paper artificial neural networks (ANN) are used to find a meaningful relation between different properties and variables of an injection-production system simulated by Eclipse reservoir simulator basedon a real reservoir in North Sea to realize if ANN is capable of the prediction of the injection-production data.

Keywords:

Gas Injection, Artificial Neural Networks, MLP Neural Networks, ECLIPSE, Reservoir Simulation,Data Normalization, Noise Addition

Paper COI Code

This Paper COI Code is FNCOGP01_045. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/327636/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Habibnia, Bahram and Javadi, Arash and Fathianpour, Nader,1393,Development of an artificial neural network model to predict future oil production rates in a sandstone reservoir under gas injection,First National Conference (Oil, Gas and Petrochemicals),Shiraz,https://civilica.com/doc/327636

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • Vladimir Alvarado, Eduardo Manrique (2313) Enhanced Oil Recovery, Field Planning ...
  • United States Department of Energy (2311) Enhanced Oil Recovery/CO2 Injection, ...
  • Electric Power Research Institute (1222) Enhanced Oil Recovery Scoping Study, ...
  • Kenneth S. Deffeyes, Hubbert's Peak (2312) the Impending World Oil ...
  • T.T. Chow, G.Q. Zhang, Z. Lin, C.L. Song (2332) Global ...
  • C.R. Chen, H.S. Ramaswamy (2332) Modeling and optimization of variable ...
  • ] B. Ozcelik, T. Erzurumlu (2335) Determination of effecting dimensional ...
  • B. Ozcelik, T. Erzurumlu (2330) Comparison of the warpage optimization ...
  • Research Info Management

    Certificate | Report | من نویسنده این مقاله هستم
    این Paper در بخشهای موضوعی زیر دسته بندی شده است:

    اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    New Papers

    Share this page

    More information about COI

    COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

    The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

    Support