ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

Simulation of Microbial Enhanced Oil Recovery by Using of Neural Networks

Year: 1390
COI: ICHEC07_598
Language: EnglishView: 454
This Paper With 8 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 8 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

Mohammad Torkaman - Department of Chemical and Petroleum Engineering, Sharif University of technology tehran iran
Saeid Morshedi - Department of Chemical and Petroleum Engineering, Sharif University of technology tehran iran
Mohsen Masihi - Department of Chemical and Petroleum Engineering, Sharif University of technology tehran iran
Mohammad Hosein Ghazanfari - Department of Chemical and Petroleum Engineering, Sharif University of technology tehran iran

Abstract:

In this article, we are going to simulate the reservoir by using two layer perceptron. Indeed a MODEL was developed to simulate the increase in oil recovery caused by bacteria injection into an oil reservoir. This model was affected by reservoir temperature and amount of water injected into thereservoir for enhancing oil recovery. Comparing experimental and simulation results and also the erratic trend of data show that the neural networks have modeled this system properly. Consideringthe effects of non-linear factors and their erratic and unknown impacts on recovered oil, theperceptron neural network can develop a proper model for oil recovery factor in various conditions. The neural networks have not been applied in modeling of microbial enhanced oil recovery sincenow. Finally, we are going to design a controller for the neural network. This controller is designed for the case where output of the network is oil recovery factor. For this purpose, the network is designed as a one layer network in which just one output matches each time. In this case, a one layer network will have acceptable results.

Keywords:

Neural network, Enhanced oil recovery, Microbial method, Simulation, Perceptron

Paper COI Code

This Paper COI Code is ICHEC07_598. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/341348/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Torkaman, Mohammad and Morshedi, Saeid and Masihi, Mohsen and Ghazanfari, Mohammad Hosein,1390,Simulation of Microbial Enhanced Oil Recovery by Using of Neural Networks,07th International Congress on Chemical Engineering,Kish Island,https://civilica.com/doc/341348

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • M. Samir, Abu El Ela, M., Marsafy, S. El., Tayeb, ...
  • Bryant, R. S., Bertus, K. M., Stepp, A. K., Chang, ...
  • Islam, M. R., and Gianetto. Mathematical modeling and scaling up ...
  • Vossoughi, S., and Buller, C. S.preliminary modification by in situgelation ...
  • Zurada. Introduction to artificial neural network. Academic Press, Pws Pub ...
  • Hascakir, B., and Kovscek, A.R. Reservoir simulation of cyclic steam ...
  • _ Internationa Chemical Engineering Congress & Exhibition Kish, Iran, 21-24 ...
  • Research Info Management

    Certificate | Report | من نویسنده این مقاله هستم
    این Paper در بخشهای موضوعی زیر دسته بندی شده است:

    اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    Scientometrics

    The specifications of the publisher center of this Paper are as follows:
    Type of center: دانشگاه دولتی
    Paper count: 13,803
    In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

    New Papers

    Share this page

    More information about COI

    COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

    The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

    Support