عنوان مقاله: Quantum Simulation Study of Single Halo Schottky Barrier CNTFETs ## محل انتشار: دومین همایش ملی پژوهش های کاربردی در برق، مکانیک و مکاترونیک (سال: 1393) تعداد صفحات اصل مقاله: 6 ## نویسندگان: Amin ghasemi nejad raeini - Gol e Gohar Mining and industrial company, Sirjan, Iran Zoheir Kordrostami - Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz, Iran #### خلاصه مقاله: In this paper, we performed a comprehensive scaling study of a schottky barrier carbon nanotube field-effect transistor (SB_CNTFET) with halo doping (HD) using self-consistent and atomistic scale simulations. Our simulation results demonstrate that drain induced barrier lowering (DIBL) diminishes in the HD-SB_CNTFET due to a step in the potential of the CNT at the interface of p-doped and undoped regions in the channel. Also, the hot carrier effect minimizes with reduction of the peak of the electric field at the drain side of the HD SB_CNTFET. Moreover, the features of the HD_SB_CNTFET can be controlled by the length and concentration engineering of the HD region. Leakage current and on/off current ratio improve with an increase of the length and concentration of the HD region, due to the increment of the threshold voltage and the barrier height of the p_n junction near the source. Therefore, this work can provide an incentive for further experimental exploration # کلمات کلیدی: Schottky Barrier CNTFET, Single Halo, Quantum Simulation لینک ثابت مقاله در پایگاه سیوپلیکا: https://civilica.com/doc/387244