EVOL UTIONARY BASE OPTIMIZATION METHOD TO DESIGN OF ARTIFICIAL NEURAL NETWORK FOR MODELING OF CLAUS REACTION FURNACE
عنوان مقاله: EVOL UTIONARY BASE OPTIMIZATION METHOD TO DESIGN OF ARTIFICIAL NEURAL NETWORK FOR MODELING OF CLAUS REACTION FURNACE
شناسه ملی مقاله: ICOGPP02_033
منتشر شده در دومین کنفرانس بین المللی نفت، گاز و پتروشیمی در سال 1393
شناسه ملی مقاله: ICOGPP02_033
منتشر شده در دومین کنفرانس بین المللی نفت، گاز و پتروشیمی در سال 1393
مشخصات نویسندگان مقاله:
Mohammad Hosein Eghbal Ahmadi - Research Institute of Petroleum Industry
Maryam Sadi - Research Institute of Petroleum Industry,
Mahdi Ahmadi Marvast - Research Institute of Petroleum Industry,
خلاصه مقاله:
Mohammad Hosein Eghbal Ahmadi - Research Institute of Petroleum Industry
Maryam Sadi - Research Institute of Petroleum Industry,
Mahdi Ahmadi Marvast - Research Institute of Petroleum Industry,
in this paper, an evolutionary approach is used to optimize the topology and characteristics of a feed forward Artificial Neural Network (ANN) in order to predict Claus reaction furnace effluents (SO2 and S2) mole fractions. Input parameters include temperature, reactant (H2S) mole fraction and residence time. The ranges of input data vary from 950 to 1250 °C, 17.91% to 31.29% and 0.5 to 2 second, respectively. Two optimum multilayer feed-forward ANNs were developed separately to predict SO2 and S2 mole fractions at reactor outlet using Genetic Algorithm. Design of the optimum ANN includes determination of number of neurons in each hidden layer, neuron transfer functions and connection pattern through neurons. It can be concluded that using black box modeling provides an accuracy of more than 90% which shows a good improvement comparingwith available kinetic modeling.
کلمات کلیدی: Artificial Neural Network, Genetic Algorithm, Claus Reaction Furnace, Reactor Modeling,Optimization
صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/393875/