ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

Shell Polynomial of some graphs

Year: 1393
COI: ICNN05_383
Language: EnglishView: 268
This Paper With 6 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 6 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

Yaghub Pakravesh - Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
Ali Iranmanesh - Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran

Abstract:

Let G= (V,E) be a connected simple graph with the vertex set V(G) and edge set E(G) Define the entries in a Shell matrix ShM as [ShM]t,k= ∑v|div=k[M]I,v where M is any square topological matrix (info matrix). The Shell matrix is the collection of the above defined entries: ShM={[ShM]i,k ; iϵV(G); kϵ [0,1,2,..., d(G)]} where d(G) is the diameter of G and the zero column [ShM)i,0 is the diagonal entries in the info matrix M. The Shell polynomial is ShM(x)= ∑kP (G,k). xk with p(G,k)being sets of loca contributions (of extent k) to the global property p(G)= U p(G,k) and summation running up to d(G). The polynomial coefficients are obtain from the above defined Shell matrices, as the half sum of columns. The Cluj-Tehran index is defined as CT(ShM,G)= ShMi(1)+ 1/2 ShM11(1).

Keywords:

Shell polynomial; Cluj-Tehran index; nanotube

Paper COI Code

This Paper COI Code is ICNN05_383. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/397562/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Pakravesh, Yaghub and Iranmanesh, Ali,1393,Shell Polynomial of some graphs,5th International Congress on Nanoscience & Nanotechnology (ICNN2014),Tehran,https://civilica.com/doc/397562

Research Info Management

Certificate | Report | من نویسنده این مقاله هستم

اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

Scientometrics

The specifications of the publisher center of this Paper are as follows:
Type of center: دانشگاه دولتی
Paper count: 29,176
In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

Share this page

More information about COI

COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

Support