Identifying Trends through Semantic Social Network Analysis: Using sequence pattern

Publish Year: 1394
نوع سند: مقاله کنفرانسی
زبان: English
View: 867

This Paper With 11 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

ICESCON01_0469

تاریخ نمایه سازی: 25 بهمن 1394

Abstract:

Identify key nodes and predict the behavior of users on social networks has attracted many enthusiasts in academia and industry. There are different methods used to calculate the degree of importance of the key nodes in social networks that examined the communication of each node in the network with all other nodes and referred one degree to each of this node. Based on these degrees, trends in user behavior will be extracted. In fact, we use from social networks data to check customer behavior And with introduction of an alternative algorithm based on sequence patterns mining algorithms on sequences extracted by Depth-First Search (DFS) of the social network graph, the size of the graph for a faster extraction trends are reduced. Innovative approach to manage large social networks and redundant nodes by combining sequence patterns structure on the body of social network traversal, and thus significant reduction in computational overhead of trend mining and increase in speed of calculate them especially in dynamic networks that we encountered with the production of large amounts of data. The results of this new proposed method show in case study on large and dynamic real dataset of users contact information in Twitter from their mobile phone messages exchanged during six consecutive months. traversal and reduce the size of social network, cause a significant gap between the values of declined network And the main network that this subject Improved in the proposed model in this paper and compared with a unique algorithm called SMI. This paper shows that The proposed algorithm with track down the nodes with less betweenness centrality being able to remove a large number of nodes and greatly reduce the computational overhead, along with, reduction the betweenness centrality gap In comparison of other approach.

Authors

Sedigheh abbasghorbani

Young Researchers and Elite Club, Chalus Branch, Islamic Azad University, Chalus, Iran

arash sharifi

Department of Computer Science and Research Branch,Islamic Azad University,Tehran,Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Acar, E. Dunlavy, D. et al, (2009) "Link Prediction _ ...
  • Cantonese, Salvadore. et. al., (2011) "Crawling Facebook for Social Network ...
  • Nohuddin. Puteri N.E. et al, (2012) "Finding :interesting" trends in ...
  • Mislove, Alan. et al, (2007) "Measuremet and analysis of online ...
  • Bakshy, E, Hofman, J. (2011) "Identifying influencers on twitter", ACM ...
  • Barabasi, L. (2003) "Linked: How Everything Is Connected to Everything ...
  • Barnes, J.A. (1983) "Graph theory in network analysis, Social Networks", ...
  • Batagelj, Vladimir. Mrvar, Andrej. (2003) _ Analysis and visualization of ...
  • Beauchamp, Michael. (1965) "An improved index of centrality Behavioral Science", ...
  • Boddu, Sekhar Babu. et. al., (2010) "Knowledge Discovery and Retrieval ...
  • Bonacich, Philip. (1972) "Factoring and weighting approaches to status scores ...
  • Borgatti, S. Everett. M. (2006) "A graph-theoretic perspective on centrality ...
  • Cuzzocrea, Alfredo. Papadimitriou, Alexis (2012) "Edge betweenness centrality: A novel ...
  • Dodge, M. Kitchin, R. (20 _ 0) Mapping Cyberspace, Routledge. ...
  • Erbs, Nicolai. Zesch, Torsten. Gurevych, Iryna.(2001) "Link Discovery: A Comprehensive ...
  • Estevez, P.A. Tesmer (2009) "Normalized Mutual Information Feature Selection Neural ...
  • Estrada, Ernesto (2007). _ C haracterization of topological keystone species ...
  • Freeman, L. (1977), "A set of measures of centrality based ...
  • Gloor, P. Krauss, I. et al., (2009) "Web science 2, ...
  • Goyal, Amit. Bonchi, francesco., (2010) "Learning influence probabilities in social ...
  • Honeycutt, Todd. (2009) "Making Connections: Using Social Network Analysis for ...
  • Huan-Kai, Peng. et. al., (2011) "Modeling Using Conditional Random Field ...
  • Indratmo, I. Julita, Vassileva, (2009) "Social interaction history: A framework ...
  • Iyengar. Akshaya, Finin. Tim. and Joshi, Anupam. (2011) _ Content-Based ...
  • Jinjie, Huang. (2006) _ A Filter Approach to Feature Selection ...
  • Kai, Carson. Leung, Sang. and Christopher, L. (2010) "Carmichael, Exploring ...
  • Han, Jiawei. Kamber, Kamber. Pei, Jian. (2012), Data Mining Concepts ...
  • Ya-Han, Hu. Fan, Wu. Yi-Jiun, Liao. (2013) " An efficient ...
  • Anthonisse, J. (1971). "The rush in a directed graph", Technical ...
  • Freeman, L. (1977), "A set of measures of centrality based ...
  • نمایش کامل مراجع