Fault Diagnosis of Analog Circuits with Tolerances By Using RBF and BP Neural Networks
Publish place: 8th Annual Conference of Computer Society of Iran
Publish Year: 1381
Type: Conference paper
Language: English
View: 2,005
This Paper With 5 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ACCSI08_027
Index date: 7 February 2008
Fault Diagnosis of Analog Circuits with Tolerances By Using RBF and BP Neural Networks abstract
This paper presents a method for analog circuit fault diagnosis by using neural networks. This method exploits DC approach for constructing dictionary in fault diagnosis by neural networks classification capability. In addition, Radial basis function (RBF) and backward error propagation (BEP) networks are considered and compared for analog fault diagnosis. The primary focus of the paper is to provide robust diagnosis using a mechanism to deal with the problem of component tolerance and reduce testing time. Simulation results show that the radial basis function network with reasonable dimension has double precision in fault classification but its classification is local, and backward error propagation network with reasonable dimension has single precision in fault classification but its classification is global.
Fault Diagnosis of Analog Circuits with Tolerances By Using RBF and BP Neural Networks authors
Mohammadi
College of Electrical Engineering Iran University of Science and Technology Narmak, Tehran, Iran
Mohseni Monfared
College of Electrical Engineering Iran University of Science and Technology Narmak, Tehran, Iran
Molaei Nejad
College of Electrical Engineering Iran University of Science and Technology Narmak, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :