Publisher of Iranian Journals and Conference Proceedings

Please waite ..
CIVILICAWe Respect the Science
Publisher of Iranian Journals and Conference Proceedings
عنوان
Paper

Comparison of EEG Signal Features and Ensemble Learning Methods for Motor Imagery Classification

تعداد صفحات: 5 | تعداد نمایش خلاصه: 308 | نظرات: 0
سال انتشار: 1395
کد COI Paper: ICIKT08_036
زبان Paper: Englishglish
(فایل این Paper در 5 صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این Paper

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این Paper را خریداری نمایید.

با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک Paper) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید.در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.

لطفا قبل از اقدام به خرید اینترنتی این Paper، ابتدا تعداد صفحات Paper را در بالای این صفحه کنترل نمایید.

برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود فایل Paper

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 5 صفحه است در اختیار داشته باشید.

قیمت این مقاله : 3,000 تومان

آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان Paper Comparison of EEG Signal Features and Ensemble Learning Methods for Motor Imagery Classification

Mostafa Mohammadpour - Department of Computer Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
MohammadKazem Ghorbanian - Department of Computer Engineering, Buinzahra Branch, Islamic Azad University, Buinzahra, Iran
Saeed Mozaffari - Electrical and Computer Engineering Department, Semnan University, Semnan, Iran

چکیده Paper:

Classifying electroencephalogram (EEG) signal inBrain Computer Interface (BCI) is a useful methods to analysisdifferent organs of human body and it can be used for communicatewith the outside world and controlling external device.Accuracy classification of extracted features from EEG signals isa problem which many researcher try to improve it. Althoughmany methods for extracting feature and classifying EEG signalhave been proposed and developed, many of them suffer fromextracting less accurate data from EEG signals. In this work,four signal feature extraction and three ensemble learning methodhave been reviewed and performances of classification techniquesare compared for motor imagery task.

کلیدواژه ها:

EEG Signal, Motor Imagery, Feature Extraction, Classification, Ensemble Learning

کد Paper/لینک ثابت به این Paper

برای لینک دهی به این Paper می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت Paper در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/548695/

کد COI Paper: ICIKT08_036

نحوه استناد به Paper:

در صورتی که می خواهید در اثر پژوهشی خود به این Paper ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
undefined, undefined و undefined, undefined و undefined, undefined,1395,Comparison of EEG Signal Features and Ensemble Learning Methods for Motor Imagery Classification,هشتمین کنفرانس بین المللی فناوری اطلاعات ودانش,Hamadan,,,https://civilica.com/doc/548695

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این Paper اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1395, Mohammadpour, Mostafa؛ MohammadKazem Ghorbanian و Saeed Mozaffari)
برای بار دوم به بعد: (1395, Mohammadpour؛ Ghorbanian و Mozaffari)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

Research Info Management

Certificate | Report Paper

Export Citation info of this Paper to research management softwares

علم سنجی و رتبه بندی Paper

مشخصات مرکز تولید کننده این Paper به صورت زیر است:
نوع مرکز: azad university
تعداد مقالات: 9,311
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

New RelatedPapers

Share this paper

WHAT IS COI?

COI is a national code dedicated to all Iranian Conference and Journal Papers. the COI of each paper can be verified online.

Support