ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

Quality and quantity of the river parameters modeling using conjunction artificial neural network and wavelet

Year: 1395
COI: WRM06_276
Language: EnglishView: 358
This Paper With 18 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 18 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

Maryam Khalilzadeh Poshtegal - Ph.D Candidate in Civil Environmental Engineering, K.N.Toosi University of Technology, Tehran, Iran
Mojtaba Noury - Research Manager, Iran Water Resource Management Company
Kaveh Madani - Senior lecturer center of environmental policy imperial college London
Seyed Ahmad Mirbagheri - Department of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran

Abstract:

The paper describes the training, validation and application of artificial neural network (ANN) and wavelet models for computing the 11 quality and quantity parameters of the Jajrood River (Iran) in which two ANN models were identified, validated and tested for the computation of parameters in the Jajrood river water. Both the models employed eleven input water quality and quantity variables measured in river water over a period of 40 years each month at two different latyan and roudak stations. The performance of the ANN models was assessed through the coefficient of determination (R2) (square of the correlation coefficient), root mean square error (RMSE), SSE and bias computed from the measured and model computed values of the dependent variables. The model computed values of 11parameters by both the ANN models were in close agreement with their respective measured values in the river water. Relative importance and contribution of the input variables to the model output was evaluated through the partitioning approach. The identified ANN models can be used as tools for the computation of water quality and quantity parameters.

Keywords:

Artificial neural network, modeling, Correlation coefficient, River

Paper COI Code

This Paper COI Code is WRM06_276. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/559232/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Khalilzadeh Poshtegal, Maryam and Noury, Mojtaba and Madani, Kaveh and Mirbagheri, Seyed Ahmad,1395,Quality and quantity of the river parameters modeling using conjunction artificial neural network and wavelet,6th Iranian National Water Resources Management Conference,Sanandaj,https://civilica.com/doc/559232

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • Hydrology, Volume 372, Issues 1-4, 15 June 2009, PP. 17-29. ...
  • Hydrology, Volume 372, Issues 1-4, 15 June 2009, PP. 17-29. ...
  • Maier, H.R. and G.C. Dandy, 1996. The use of artificial ...
  • Maren, A., C. Harston, and R. Pap, Handbook of Neural ...
  • Mojtaba Noury et al, 2014, Water Level Elevation Variations Modeling ...
  • Nourani, V., Alami, M., Aminfar, M., 2009.A combined neural-wavele model ...
  • Nourani, V., Komasi, M., Mano, A., 2009.A multivariate ANN-Wavelt approach ...
  • Partal T, Kisi O (2007) Wavelet and Neuro-fuzzy conjunction model ...
  • Raman, H. and R. Sunilkumar, 1995. Multivariate modelling of water ...
  • Ranjithan, S., J. W. Eheart, and J. H. Garrett Jr., ...
  • Rumelhart D.E., Hinton E. and Williams J. (1986), Learning internal ...
  • Skoulikidis N.T. (2002). Hydrochemical character and spatiotemporal variations in a ...
  • Wang, W.C., Chau, K.W., Lin Qiu, C.T.C., 2009. A comparison ...
  • several artificial intelligence methods for forecasting monthly discharge time series, ...
  • Wang, W.C., Chau, K.W., Lin Qiu, C.T.C., 2009. A comparison ...
  • several artificial intelligence methods for forecasting monthly discharge time series, ...
  • Wu, C.L. Chau, K.W. and Li, Y.S., 2009.Methods to improve ...
  • Wu, C.L. Chau, K.W. and Li, Y.S., 2009.Methods to improve ...
  • performance in daily flows prediction, Jourmal of Hydrology, Volume 372, ...
  • _ _ aramet _ _ _ _ _ _ (EYE), ...
  • Research Info Management

    Certificate | Report | من نویسنده این مقاله هستم
    این Paper در بخشهای موضوعی زیر دسته بندی شده است:

    اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    Scientometrics

    The specifications of the publisher center of this Paper are as follows:
    Type of center: دانشگاه دولتی
    Paper count: 10,365
    In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

    مقالات پیشنهادی مرتبط

    New Papers

    Share this page

    More information about COI

    COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

    The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

    Support