ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

Adaptive Classification of Hyperspectral Image

Year: 1383
COI: ICEE12_047
Language: EnglishView: 1,839
This Paper With 5 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 5 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

Hamid Dehghani - Tarbiat Modaress University
Hassan Ghassemian - Tarbiat Modaress University

Abstract:

An important problem in pattern recognition is the effect of limited training samples on classification performance. When the ratio of the number of training samples to the dimensionality is small, parameter estimates become highly variable, causing the deterioration of classification performance. This problem has become more prevalent in remote sensing with the emergence of a new generation of sensors. While the new sensor technology provides higher spectral and spatial resolution, enabling a greater number of spectrally separable classes to be identified, the needed labeled samples for designing the classifier remain difficult and expensive to acquire. In this paper, we propose an adaptive classification model that operates based on decision fusion. This method uses soft learning strategy. In this classifier, learning is performed at two steps. At the beginning of this method, observation space is parted and several groups of bands are produced. After providing the primary decisions, several rules are used in decision fusion center to determine the final class of pixels. Reported results on remote sensing images show classification performance is improved, and this method may solve the limitation of training samples in the high dimensional data and the Hughes phenomenon may be mitigated.

Keywords:

Adaptive Classifier, Hyperspectral Data, Limited Training Samples

Paper COI Code

This Paper COI Code is ICEE12_047. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/59819/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Dehghani, Hamid and Ghassemian, Hassan,1383,Adaptive Classification of Hyperspectral Image,12th Iranian Conference on Electric Engineering,Mashhad,https://civilica.com/doc/59819

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • David Landgrebe, ، 'Hyp erspectral Image Data Analysis?, Dept. of ...
  • Research Info Management

    Certificate | Report | من نویسنده این مقاله هستم

    اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    New Papers

    Share this page

    More information about COI

    COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

    The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

    Support