Groundwater level estimation using radial basis function artificial neural network
عنوان مقاله: Groundwater level estimation using radial basis function artificial neural network
شناسه ملی مقاله: ICCE08_920
منتشر شده در هشتمین کنگره بین المللی مهندسی عمران در سال 1388
شناسه ملی مقاله: ICCE08_920
منتشر شده در هشتمین کنگره بین المللی مهندسی عمران در سال 1388
مشخصات نویسندگان مقاله:
G. R. Rakhshandehroo - Dept. of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran.
H. Damangir
خلاصه مقاله:
G. R. Rakhshandehroo - Dept. of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran.
H. Damangir
In this study, RBF neural network was utilized to estimate groundwater level in an unsampled piezometric well. Six scenarios were performed using the data collected from piezometric wells distributed around the unsampled well to estimate the missing groundwater level. The results showed that the estimated groundwater level time series closely follows the entire fluctuation trend in water table with a mean absolute error of 0.13 meter. The distance between the sampled zone and unsampled area affected the correlation in the data drastically. Besides the distance, station elevation played an important role in correlating groundwater changes in adjacent stations.
کلمات کلیدی: Groundwater level estimation, Empirical models, Artificial neural network, Radial basis function.
صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/62967/