CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

افزایش دقت بازشناسی چهره تحت شرایط تغییرات روشنایی به کمک روش نرمال سازی شبکه عصبی

عنوان مقاله: افزایش دقت بازشناسی چهره تحت شرایط تغییرات روشنایی به کمک روش نرمال سازی شبکه عصبی
شناسه ملی مقاله: IRANOPEN08_009
منتشر شده در هشتمین کنفرانس هوش مصنوعی و رباتیک و دهمین سمپوزیوم بین المللی ربوکاپ آزاد ایران ۲۰۱۸ در سال 1397
مشخصات نویسندگان مقاله:

نعیمه زارعی نژاد - دانشکده مهندسی برق، پزشکی و مکاترونیک، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران
محمد نوروزی - دانشکده مهندسی برق، پزشکی و مکاترونیک، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران

خلاصه مقاله:
مساله تغییرات روشنایی یکی از مشکلات اصلی در سیستم های بازشناسی چهره است، تصویر یک فرد تحت شرایط روشنایی مختلف، الگوهای کاملا متفاوتی ایجاد می کند و دقیق ترین سیستم های بازشناسی چهره به شدت حساس به تغییرات روشنایی هستند. روش های مختلفی برای حل این مساله پیشنهاد شده است. در این مقاله روش جدیدی مبتنی بر نرمال سازی روشنایی و شبکه عصبی تحت شرایط تغییرات روشنایی ارایه می شود. روش پیشنهادی طی چند مرحله به بازشناسی تصویر چهره می پردازد. ابتدا با استفاده از روش BHE سایه های ایجاد شده روی تصویر را که بر اثر تغییرات روشنایی به وجود آمده است را برطرف می کند. سپس، ویژگی های مربوط به تصویر چهره را استخراج نموده و با استفاده از روش PCA داده های موجود را کاهش می دهد و در نهایت داده های موجود را با استفاده شبکه عصبی دو لایه MLP آموزش داده و دسته بندی می کند. نتایج به دست آمده روی پایگاه داده Yale B نشان می دهد که روش پیشنهادی دقت بازشناسی چهره را به نحو مطلوبی افزایش داده است.

کلمات کلیدی:
بازشناسی چهره، تغییرات روشنایی، روش BHE، شبکه عصبی، نرمال سازی

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/761785/